Vol. 32
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-31
Quasi-Optical Frequency Selective Surface for Atmospheric Remote Sensing Application
By
Progress In Electromagnetics Research M, Vol. 32, 115-127, 2013
Abstract
The design of an efficient quasi-optics Frequency Selective Surface (FSS) filter which is required to provide a -3 dB pass band from 405 GHz to 441 GHz is presented. For atmospheric remote sensing application, this space-borne spatial device consists of a silicon layer and a thin copper layer which is perforated with periodic arrays of resonant dipole slots and circular apertures. FSS unit cell has a dimension much smaller than its operating wavelength. Unique features of this complex dense FSS structure include wide pass band properties with superb performance of frequency response and incident angles independence for TE polarization. Floquet mode analysis and finite element method (FEM) models are used to establish the geometry of the periodic structure and predict its spectral response.
Citation
Bu Gang Xia De Hai Zhang Jian Huang Jin Meng , "Quasi-Optical Frequency Selective Surface for Atmospheric Remote Sensing Application," Progress In Electromagnetics Research M, Vol. 32, 115-127, 2013.
doi:10.2528/PIERM13062304
http://www.jpier.org/PIERM/pier.php?paper=13062304
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

2. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez-Lopez, "An active ring slot with RF MEMS switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.

3. Chen, C. C., "Transmission through a conducting screen perforated periodically with apertures," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 627-632, 1970.
doi:10.1109/TMTT.1970.1127298

4. Dragoman, D. and M. Dragoman, "Terahertz fields and applications," Progress in Quantum Electronics, Vol. 28, 1-66, 2004.
doi:10.1016/S0079-6727(03)00058-2

5. Dickie, R., R. Cahill, H. S. Gamble, V. F. Fusco, A. G. Schuchinsky, and N. Grant, "Spatial demultiplexing in the submillimeter wave band using multilayer free-standing frequency selective surfaces," EEE Transactions on Antennas and Propagation, Vol. 53, 1904-1911, 2005.
doi:10.1109/TAP.2005.848668

6. Oldfield, M., B. Moyna, E. Allouis, R. Brunt, U. Cortesi, B. Ellison, J. Ellison, J. Eskell, T. Forward, T. Jones, D. Lamarre, J. Langen, P. de Maagt, D. Matheson, I. Morgan, J. Reburn, and R. Siddan, "MARSCHALS: Development of an airborne millimeter-wave limb sounder," International Symposium on Remote Sensing, International Society for Optics and Photonics, 221-228, 2001.

7. Peubey, C., W. Bell, P. Bauer, and S. D. Michele, A Study on the Spectral and Radiometric Specifications of a Post-eps Microwave maging Mission, European Centre for Medium-Range Weather Forecasts, 2011.

8. Xia, B. G., J. Meng, D. H. Zhang, and J. S. Zhang, "PMM-GA method to synthesize quasi-optical frequency selective surface on SiO2 substrate," Progress In Electromagnetics Research, Vol. 139, 599-610, 2013.

9. Goldsmith, P. F., Quasi-optical Systems: Gaussian Beam Quasi-optical Propagation and Applications, IEEE Press, Piscataway, 1998.

10. Rebecca, H. J. and D. G. Hall, "Free-space azimuthal paraxial wave equation: The azimuthal Bessel-Gauss beam solution," Optics Letters,, Vol. 19, 427-429, 1994.
doi:10.1364/OL.19.000427

11. Kuchment, P. A., "Floquet theory for partial differential equations," Russian Mathematical Surveys, Vol. 37, 1-60, 1982.
doi:10.1070/RM1982v037n04ABEH003965

12. Sorokin, S. V. and O. A. Ershova, "Analysis of the energy transmission in compound cylindrical shells with and without internal heavy fluid loading by boundary integral equations and by Floquet theory," Journal of Sound and Vibration, Vol. 291, 81-99, 2006.
doi:10.1016/j.jsv.2005.05.031

13. Watanabe, K. and K. Yasumoto, "Accuracy improvement of the Fourier series expansion method for Floquet-mode analysis of photonic crystal waveguides," Progress In Electromagnetics Research, Vol. 92, 209-222, 2009.
doi:10.2528/PIER09032704

14. Lu, B., S. X. Gong, S. Zhang, Y. Guan, and J. Ling, "Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 114-117, 2010.
doi:10.1109/LAWP.2010.2087003

15. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

16. Zhang, J. C., Y. Z. Yin, and R. Yi, "Resonant characteristics of frequency selective surfaces on ferrite substrates," Progress In Electromagnetics Research, Vol. 95, 355-364, 2009.
doi:10.2528/PIER09072702

17. Monacelli, B., J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE Transactions on Antennas and Propagation, Vol. 53, 745-752, 2005.
doi:10.1109/TAP.2004.841290

18. Lee, J. W., M. A. Seo, D. S. Kim, S. C. Jeong, C. Lienau, J. H. Kang, and Q. Park, "Fabry-Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures," Applied Physics Letters, Vol. 88, 071114-1-071114-3, 2006.

19. Takakura, Y., "Optical resonance in a narrow slit in thick metallic screen," Physical Review Letters, Vol. 86, 5601-5603, 2001.
doi:10.1103/PhysRevLett.86.5601

20. Reed, J. A. and D. M. Byrne, "Frequency-selective surfaces with multiple apertures within a periodic cell," Journal of the Optical Society of America, Vol. 15, 660-668, 1997.

21. Bardi, I., R. Remski, D. Perry, and Z. Cendes, "Plane wave scattering from frequency-selective surfaces by the finite-element method," IEEE Transactions on Magnetics, Vol. 38, 641-644, 2002.
doi:10.1109/20.996167

22. Winnewisser, C., F. Lewen, J. Weinzierl, and H. Helm, "Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy," Applied Optics, Vol. 38, 3961-3976, 1999.
doi:10.1364/AO.38.003961

23. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Transactions on Antennas and Propagation, Vol. 55, 2931-2934, 2007.
doi:10.1109/TAP.2007.905980