Vol. 36
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-22
Design, Simulation and Fabrication of an Optimized Microstrip Antenna with Metamaterial Superstrate Using Particle Swarm Optimization
By
Progress In Electromagnetics Research M, Vol. 36, 101-108, 2014
Abstract
In this paper, a novel near zero refractive index metamaterial is designed and used as a superstrate of a microstrip antenna. In order to decrease the return loss, particle swarm optimization (PSO) is used to optimize the metamaterial structure. One of the important factors in the antenna designing, which influences the radiation efficiency, is to determine the accurate position of the feed, and PSO is used to find a precise location of the feed with minimum return loss. The simulation and fabrication of the microstrip antenna using the optimized metamaterial structure is also presented. The performance of the antenna is improved, and the gain is increased up to 4.5 dB. The directivity and radiation efficiency are significantly enhanced. Moreover, a very good agreement is observed between simulation and measurement results.
Citation
Nooshin Feiz, Farzad Mohajeri, and Davoud Zarifi, "Design, Simulation and Fabrication of an Optimized Microstrip Antenna with Metamaterial Superstrate Using Particle Swarm Optimization," Progress In Electromagnetics Research M, Vol. 36, 101-108, 2014.
doi:10.2528/PIERM14010202
References

1. Howell, J. Q., "Microstrip antennas," IEEE Trans. Antennas Propagation Magazine, Vol. 23, 90-93, 1975.
doi:10.1109/TAP.1975.1141009

2. Guney, H. K. and N. Sarikaya, "A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas," IEEE Trans. Antennas Propagation Magazine, Vol. 55, 659-668, 2007.
doi:10.1109/TAP.2007.891566

3. Maslovski, S., P. Ikonen, I. Kolmakov, and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, Vol. 54, No. 9, 61-81, Sep. 2005.
doi:10.2528/PIER04101101

4. Yousefi, L. and O. M. Ramhi, "New artificial magnetic materials based on fractal hilbert curves," Proc. IEEE Int. Workshop Antenna Technol.: Small Smart Antennas Novel Metamater., 237-240, Cambridge, UK, Mar. 2007.

5. Foroozeshand, A. and L. Shafai, "Investigation into the effects of the reflection phase characteristics of highly-reflective superstrates on resonant cavity antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3392-3396, 2010.
doi:10.1109/TAP.2010.2055810

6. Weily, A. R., L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, "A planar resonator antenna based on a woodpile EBG material," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2004.840531

7. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circulary polarized antenna using semi planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

8. Liu, H., S. Lei, X. Shi, and L. Li, "Study of antenna superstrates using metamaterials for directivity enhancement based on fabry-perot resonant cavity," International Journal of Antenna and Propagation, Vol. 2013, 209714-209715, 2013.

9. Li, B., B. Wu, and C. H. Liang, "Study on high gain circular waveguide array antenna with metamaterial structure," Progress In Electromagnetics Research, Vol. 60, 207-219, 2006.
doi:10.2528/PIER05121101

10. Li, B., X. J. Dang, and C. H. Liang, "High gain circular waveguide antenna using 1-delectromagnetic band-gap structure," Chinese Journal of Radio Science, Vol. 20, No. 6, 879-884, 2006.

11. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

12. Jin, N. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite di®erence time domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3459-3468, 2005.
doi:10.1109/TAP.2005.858842

13. Eberhart, R. C. and Y. Shi, "Particle swarm optimization: Developments, applications and resources," Proceedings Congress Evolutionary Computation, 81-86, 2001.

14. Clerc, M., "The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization," Proceedings, ICEC, 1951-1957, Washington, DC, 1999.

15. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

16. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterial," Phys. Rev. E, Vol. 70, No. 016608, 1-7, 2004.