Vol. 41
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-19
Incomplete Bessel Polynomials: a New Class of Special Polynomials for Electromagnetics
By
Progress In Electromagnetics Research M, Vol. 41, 85-93, 2015
Abstract
A new class of incomplete Bessel polynomials is introduced, and its application to the solution of electromagnetic problems regarding transient wave radiation phenomena in truncated spherical structures. The definition of said special functions is introduced, and the relevant analytical properties are derived. The definition is such that the interrelationships between the incomplete polynomials parallel, as far as is feasible, those for canonical Bessel polynomials.
Citation
Diego Caratelli, Galina Babur, Alexander A. Shibelgut, and Oleg Stukach, "Incomplete Bessel Polynomials: a New Class of Special Polynomials for Electromagnetics," Progress In Electromagnetics Research M, Vol. 41, 85-93, 2015.
doi:10.2528/PIERM14123104
References

1. Andrews, G. E., R. Askey, and R. Roy, , Special Functions, 2001.
doi:10.1109/TAP.2004.835269

2. Cicchetti, R. and A. Faraone, "Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 12, 3373-3389, 2004.
doi:10.1109/TAP.2010.2055800

3. Caratelli, D. and A. Yarovoy, "Unified time- and frequency-domain approach for accurate modeling of electromagnetic radiation processes in ultra-wideband antennas," IEEE Trans. Antennas Propagat., Vol. 58, No. 10, 3239-3255, 2010.

4. Caratelli, D. and A. Yarovoy, "Incomplete modified spherical Bessel functions: a new class of special functions for electromagnetics," Proc. 20th International Symposium on Electromagnetic Theory, 289-292, Berlin, Germany, 2010.

5. MacRobert, T. M. and I. N. Sneddon, Spherical Harmonics: An Elementary Treatise on Harmonic Functions with Applications, Pergamon Press, 1967.

6. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1962.

7. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1962.

8. Luke, Y., The Special Functions and Their Approximations, Academic Press, 1969.
doi:10.1090/S0002-9947-1949-0028473-1

9. Krall, H. L. and O. Frink, "A new class of orthogonal polynomials: The Bessel polynomials," Trans. Amer. Math. Soc., Vol. 65, No. 1, 100-115, 1948.

10. Grosswald, E., Bessel Polynomials (Lecture Notes in Mathematics), Springer-Verlag, 1978.

11. Thomson, W. E., "Delay networks having maximally flat frequency characteristics," Proc. IEE, Vol. 96, 487-490, Part III, 1949.
doi:10.1109/JSEN.2011.2117417

12. Caratelli, D., A. Massaro, R. Cingolani, and A. Yarovoy, "Accurate time-domain modeling of reconfigurable antenna sensors for non-invasive melanoma skin cancer detection," IEEE Sensors J., Vol. 12, No. 3, 635-643, 2012.

13. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, 2005.

14. Caratelli, D. and M. C. Viganó, "Analytical synthesis technique for linear uniform-amplitude sparse arrays," Radio Sci., 2011, 10.1029/2010RS004522.