1. Zhu, Z. Q. and D. Howe, "Halbach permanent magnet machines and applications: A review," IEE Proc. Electr. Power Appl., Vol. 148, No. 7, 299-308, Jul. 2011. Google Scholar
2. Popa, D.-C., V.-I. Gliga, and L. Szabó, "Theoretical and experimental study of a modular tubular transverse flux reluctance machine," Progress In Electromagnetics Research, Vol. 139, 41-55, 2013.
doi:10.2528/PIER13030809 Google Scholar
3. Ding, W., Z. Yin, L. Liu, J. Lou, Y. Hu, and Y. Liu, "Magnetic circuit model and finite-element analysis of a modular switched reluctance machine with E-core stators and multi-layer common rotors," IET Electr. Power Appl., Vol. 8, No. 8, 296-309, 2014.
doi:10.1049/iet-epa.2013.0366 Google Scholar
4. Aravind Vaithilingam, C., N. Misron, I. Aris, M. H. Marhaban, and M. Nirei, "Electromagnetic design and FEM analysis of a novel dual-air-gap reluctance machine," Progress In Electromagnetics Research, Vol. 140, 523-544, 2013.
doi:10.2528/PIER13022008 Google Scholar
5. Lin, D., P. Zhou, S. Stanton, and Z. J. Cendes, "An analytical circuit model of switched reluctance motors," IEEE Trans. on Magn., Vol. 45, No. 12, 5368-5375, Dec. 2009.
doi:10.1109/TMAG.2009.2024754 Google Scholar
6. Kokernak, J. M. and D. A. Torrey, "Magnetic circuit model for the mutually coupled switched-reluctance machine," IEEE Trans. on Magn., Vol. 36, No. 2, 500-507, Mar. 2000.
doi:10.1109/20.825824 Google Scholar
7. Xu, Z., S. Xie, and P. Mao, "Analytical design of flux-switching hybrid excitation machine by a nonlinear magnetic circuit method," IEEE Trans. on Magn., Vol. 49, No. 6, 3002-3008, Jun. 2013.
doi:10.1109/TMAG.2012.2236566 Google Scholar
8. Zhu, Z. Q., Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, "Analysis of electromagnetic performance of flux-switching permanent-magnet machines by nonlinear adaptive lumped parameter magnetic circuit model," IEEE Trans. on Magn., Vol. 41, No. 11, 4277-4287, Nov. 2005.
doi:10.1109/TMAG.2005.854441 Google Scholar
9. Zhou, S., H. Yu, M. Hu, C. Jiang, and L. Huang, "Nonlinear equivalent magnetic circuit analysis for linear flux-switching permanent magnet machines," IEEE Trans. on Magn., Vol. 48, No. 2, 883-886, Feb. 2012.
doi:10.1109/TMAG.2011.2173467 Google Scholar
10. Cheng, M., K. T. Chau, C. C. Chan, E. Zhou, and X. Huang, "Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors," IEEE Trans. on Magn., Vol. 36, No. 1, 339-348, Part 2, 2000.
doi:10.1109/20.822544 Google Scholar
11. Kano, Y., T. Kosaka, and N. Matsui, "A simple nonlinear magnetic analysis for axial-flux permanent-magnet machines," IEEE Trans. on Ind. Electron., Vol. 57, No. 6, 2124-2133, Jun. 2010.
doi:10.1109/TIE.2009.2034685 Google Scholar
12. Tarmer, İ, "Designing an efficient permanent magnet generator for outdoor utilities," Int. J. Eng. Science Inno. Tech., Vol. 3, No. 3, 543-548, 2014. Google Scholar
13. Chen, Q., G. Liu, W. Zhao, and M. Shao, "Nonlinear adaptive lumped parameter magnetic circuit analysis for spoke-type fault-tolerant permanent-magnet motors," IEEE Trans. on Magn., Vol. 49, No. 9, 5150-5157, Sep. 2013.
doi:10.1109/TMAG.2013.2253327 Google Scholar
14. Hemeida, A. and P. Sergeant, "Analytical modeling of surface PMSM using a combined solution of Maxwell’s equations and magnetic equivalent circuit," IEEE Trans. on Magn., Vol. 50, No. 12, 7027913, Dec. 2014.
doi:10.1109/TMAG.2014.2330801 Google Scholar
15. Jung, M. S., S. J. In, K. J. Hyun, and S. R. Jong, "Analysis of overhang effect for a surface-mounted permanent magnet machine using a lumped magnetic circuit model," IEEE Trans. on Magn., Vol. 50, No. 5, 1-7, 2014.
doi:10.1109/TMAG.2013.2294154 Google Scholar
16. Kazan, E. and A. Onat, "Modeling of air core permanent-magnet linear motors with a simplified nonlinear magnetic analysis," IEEE Trans. on Magn., Vol. 47, No. 6, 1753-1762, Jun. 2011.
doi:10.1109/TMAG.2011.2111375 Google Scholar
17. Hsieh, M. F. and Y. C. Hsu, "A generalized magnetic circuit modeling approach for design of surface permanent-magnet machines," IEEE Trans. on Ind. Electron., Vol. 59, No. 2, 779-792, Feb. 2012.
doi:10.1109/TIE.2011.2161251 Google Scholar
18. Kemmetmuller, W., D. Faustner, and A. Kugi, "Modeling of a permanent magnet synchronous machine with internal magnets using magnetic equivalent circuits," IEEE Trans. on Magn., Vol. 50, No. 6, 8101314, 8101314, Jun. 2014. Google Scholar
19. Zhu, L., S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, "Analytical modeling of open-circuit air-gap field distributions in multi-segment and multilayer interior permanent-magnet machines," IEEE Trans. on Magn., Vol. 45, No. 8, 3121-3130, Aug. 2009.
doi:10.1109/TMAG.2009.2019841 Google Scholar
20. Lovelace, E. C., T. M. Jahns, and J. H. Lang, "A saturating lumped-parameter model for an interior PM synchronous machine," IEEE Trans. on Ind. Appl., Vol. 38, No. 3, 645-650, May-Jun. 2002.
doi:10.1109/TIA.2002.1003413 Google Scholar
21. Seo, J. H. and H. S. Choi, "Cogging torque calculation for IPM having single layer based on magnetic circuit model," IEEE Trans. on Magn., Vol. 50, No. 10, 8102104, Oct. 2014. Google Scholar
22. Markovic, M. and Y. Perriard, "Optimization design of a segmented halbach permanent-magnet motor using an analytical model," IEEE Trans. on Magn., Vol. 45, No. 7, 2955-2960, Jul. 2009.
doi:10.1109/TMAG.2009.2015571 Google Scholar
23. Rahideh, A. and T. Korakianitis, "Analytical magnetic field distribution of slotless brushless machines with inset permanent magnets," IEEE Trans. on Magn., Vol. 47, No. 6, 1763-1774, Part 2, Jun. 2011.
doi:10.1109/TMAG.2011.2110658 Google Scholar
24. Yan, L., L. Zhang, T. Wang, Z. Jiao, C. Y. Chen, and I. M. Chen, "Magnetic field of tubular linear machines with dual Halbach array," Progress In Electromagnetics Research, Vol. 136, 283-299, 2013.
doi:10.2528/PIER12110302 Google Scholar
25. Shen, Y. and Z. Q. Zhu, "General analytical model for calculating electromagnetic performance of permanent magnet brushless machines having segmented Halbach array," IET Electr. Syst. Transp., Vol. 3, No. 3, 57-66, 2013.
doi:10.1049/iet-est.2012.0055 Google Scholar