Vol. 51
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-30
Efficient Analysis of Rectangular-Shape Metamaterials Using P-CBFM/P-FFT Method
By
Progress In Electromagnetics Research M, Vol. 51, 121-129, 2016
Abstract
In this paper, we introduce an efficient algorithm to analyze metamaterials, which can be finite periodic structures with tightly coupling between nearby cells. Firstly, the algorithm, based on method of moments (MoM), uses hybrid volume-surface integral equation (VSIE) to analyze composite dielectric-conductor objects. Then, the characteristic basis function method (CBFM) and precorrected-fast Fourier transform (p-FFT) algorithm are combined to accelerate the calculation of equations, based on which, metamaterials composed of connected periodic cells can be analyzed efficiently.
Citation
Ke Xiao, Huiying Qi, Sheng Shui Wang, Ying Liu, Liang Ding, and Shun-Lian Chai, "Efficient Analysis of Rectangular-Shape Metamaterials Using P-CBFM/P-FFT Method," Progress In Electromagnetics Research M, Vol. 51, 121-129, 2016.
doi:10.2528/PIERM15092602
References

1. Sarkar, T. K. and E. Arvas, "An integral equation approach to the analysis of finite microstrip antennas volume-surface formulation," IEEE Trans. Ant. Propagat., Vol. 38, No. 3, 305-312, 1990.
doi:10.1109/8.52238

2. Jin, J. F., S. Y. Liu, Z. F. Lin, and S. T. Chui, "Effective-medium theory for anisotropic magnetic metamaterials," Physical Review B, Vol. 80, 115101, 2009.
doi:10.1103/PhysRevB.80.115101

3. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Ant. Propagat., Vol. 56, No. 4, 999-1007, 2008.
doi:10.1109/TAP.2008.919166

4. Lu, W. B., T. J. Cui, Z. G. Qian, X. X. Yin, and W. Hong, "Accurate analysis of large-scale periodic structures using an effcient sub-entire-domain basis function method," IEEE Trans. Ant. Propagat., Vol. 52, No. 11, 3078-3085, 2004.
doi:10.1109/TAP.2004.835143

5. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave and Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

6. Delgado, C., M. F. Cátedra, and R. Mittra, "Efficient multilevel approach for the generation of characteristic basis functions for large scatters," IEEE Trans. Ant. Propagat., Vol. 56, No. 7, 2134-2137, Jul. 2008.
doi:10.1109/TAP.2008.924771

7. Bianconi, G., C. Pelletti, R. Mittra, K. Du, S. Genovesi, and A. Monorchio, "Spectral domain characteristic basis function method for efficient simulation of microstrip devices in layered media," IET Microwaves, Ant. and Propagat., Vol. 6, No. 4, 411-417, 2012.
doi:10.1049/iet-map.2011.0412

8. Konno, K., Q. Chen, K. Sawaya, and T. Sezai, "Optimization of block Size for CBFM in MoM," IEEE Trans. Antennas Propagat., Vol. 60, No. 10, 4719-4724, Oct. 2012.
doi:10.1109/TAP.2012.2207330

9. Hu, L., L. W. Li, and R. Mittra, "Electromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive integral methods," IEEE Trans. Ant. Propagat., Vol. 58, No. 9, 3086-3090, Sep. 2010.
doi:10.1109/TAP.2010.2052563

10. Shao, H., J. Hu, W. C. Lu, H. Guo, and Z. P. Nie, "Analyzing large-scale arrays using tangential equivalence principle algorithm with characteristic basis functions," Proceedings of the IEEE, Vol. 101, No. 2, 414-422, Feb. 2013.
doi:10.1109/JPROC.2012.2193652

11. Xiao, K., F. Zhao, S.-L. Chai, J.-J. Mao, and J. L.-W. Li, "Scattering analysis of periodic arrays using combined CBF/p-FFT method," Progress In Electromagnetics Research, Vol. 115, 131-146, 2011.
doi:10.2528/PIER11020601

12. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Physical Review B, Vol. 65, 201104, 2002.
doi:10.1103/PhysRevB.65.201104