Research Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Physical Chemical Problems of the Belarusian State University
Belarus
HomepageResearch Institute for Physical Chemical Problems of the Belarusian State University
Belarus
Homepage1. Qiang, C., J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, and P. Xu, "Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles," Journal of Alloys and Compounds, Vol. 506, 93-97, 2010.
doi:10.1016/j.jallcom.2010.06.193
2. Tsay, C. Y., R. B. Yang, D. S. Hung, Y. H. Hung, Y. D. Yao, and C. K. Lin, "Investigation on electromagnetic and microwave absorbing properties of La0.7Sr0.3MnO3-d/carbon nanotube composites," Journal of Applied Physics, Vol. 107, 09A502, 2010.
doi:10.1063/1.3337681
3. Danlee, Y., I. Huynen, and C. Bailly, "Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes," Applied Physics Letters, Vol. 100, 213105, 2012.
doi:10.1063/1.4717993
4. Duan, M. C., L. M. Yu, L. M. Sheng, K. An, W. Ren, and X. L. Zhao, "Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite," Journal of Applied Physics, Vol. 115, 174101, 2014.
doi:10.1063/1.4873636
5. Kim, S.-T. and S.-S. Kim, "Microwave absorbing properties of hollow microspheres plated with magnetic metal films," Journal of Applied Physics, Vol. 115, 17A528, 2014.
doi:10.1063/1.4868916
6. El-Hakim, H. A., K. R. Mahmoud, and A. Abdelaziz, "Design of compact double-layer microwave absorber for X-Ku bands using genetic algorithm," Progress In Electromagnetics Research B, Vol. 65, 157-168, 2016.
doi:10.2528/PIERB15111702
7. Zhuravlev, V., V. Suslyaev, E. Korovin, and K. Dorozhkin, "Electromagnetic waves absorbing characteristics of composite material containing carbonyl iron particles," Materials Sciences and Applications, Vol. 5, 803-811, 2014.
doi:10.4236/msa.2014.511080
8. Ipatov, M., V. Zhukova, L. V. Panina, and A. Zhukov, "Ferromagnetic microwires composite metamaterials with tuneable microwave electromagnetic parameters," PIERS Proceedings, Vol. 5, 586-590, Beijing, China, March 23–27, 2009.
9. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.
doi:10.2528/PIERB11071108
10. Bychanok, D., S. Li, A. Sanchez-Sanchez, G. Gorokhov, P. Kuzhir, F. Ogrin, A. Pasc, T. Ballweg, K. Mandel, A. Szczurek, V. Fierro, and A. Celzard, "Hollow carbon spheres in microwaves: Bioinspired absorbing coating," Applied Physics Letters, Vol. 108, 013701, 2016.
doi:10.1063/1.4938537
11. Cao, M.-S., W.-L. Song, Z.-L. Hou, B.Wen, and J. Yuan, "The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites," Carbon, Vol. 48, 788-796, 2010.
doi:10.1016/j.carbon.2009.10.028
12. Sarto, M. S., A. G. D’Aloia, A. Tamburrano, and G. De Bellis, "Synthesis, modeling, and experimental characterization of graphite nanoplatelet-based composites for EMC applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 17-27, 2012.
doi:10.1109/TEMC.2011.2178853
13. Buchner, R., J. Barthel, and J. Stauber, "The dielectric relaxation of water between 0◦C and 35◦C," Chemical Physics Letters, Vol. 306, 57-63, 1999.
doi:10.1016/S0009-2614(99)00455-8
14. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," Photonics Journal, Vol. 1, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288
15. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301–24, 2012.
16. Brosseau, C., P. Molinie, F. Boulic, and F. Carmona, "Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites," Journal of Applied Physics, Vol. 89, 8297-8310, 2001.
doi:10.1063/1.1371938
17. Bychanok, D., P. Kuzhir, S. Maksimenko, S. Bellucci, and C. Brosseau, "Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave," Journal of Applied Physics, Vol. 113, 124103–6, 2013.
doi:10.1063/1.4798296
18. Kuzhir, P., A. Paddubskaya, D. Bychanok, A. Nemilentsau, M. Shuba, A. Plusch, S. Maksimenko, S. Bellucci, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys, "Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding," Thin Solid Films, Carbon- or Nitrogen-containing Nanostructured Composite Films, Vol. 519, 4114-4118, 2011.
19. Apanasevich, N., A. Sokal, K. Lapko, A. Kudlash, V. Lomonosov, A. Plyushch, P. Kuzhir, J. Macutkevic, J. Banys, and A. Okotrub, "Phosphate ceramics — Carbon nanotubes composites: Liquid aluminum phosphate vs solid magnesium phosphate binder," Ceramics International, Vol. 41, 12147-12152, 2015.
doi:10.1016/j.ceramint.2015.06.033
20. Kanygin, M. A., O. V. Sedelnikova, I. P. Asanov, L. G. Bulusheva, A. V. Okotrub, P. P. Kuzhir, A. O. Plyushch, S. A. Maksimenko, K. N. Lapko, A. A. Sokol, O. A. Ivashkevich, and P. Lambin, "Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites," Journal of Applied Physics, Vol. 113, 144315, 2013.
doi:10.1063/1.4800897
21. Plyushch, A., D. Bychanok, P. Kuzhir, S. Maksimenko, K. Lapko, A. Sokol, J. Macutkevic, J. Banys, F. Micciulla, A. Cataldo, and S. Bellucci, "Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application," Phys. Status Solidi A, Vol. 211, 2580-2585, 2014.
doi:10.1002/pssa.201431306
22. Plyushch, A. O., A. A. Sokol, K. N. Lapko, P. P. Kuzhir, Y. V. Fedoseeva, A. I. Romanenko, O. B. Anikeeva, L. G. Bulusheva, and A. V. Okotrub, "Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes," Physics of the Solid State, Vol. 56, 2537-2542, 2014.
doi:10.1134/S1063783414120257
23. Gaylor, K., "Radar absorbing materials-mechanisms and materials," Materials Research Labs Ascot Vale (Australia), No. MRL-TR-89-1, 1989.
24. Baker-Jarvis, J., M. Janezic, J. J. Grosvenor, and R. Geyer, "Transmission/reflection and shortcircuit line methods for measuring permittivity and permeability," NIST Technical Note, 1355, 1993.
25. Bychanok, D., A. Plyushch, K. Piasotski, A. Paddubskaya, S. Voronovich, P. Kuzhir, S. Baturkin, A. Klochkov, E. Korovin, M. Letellier, S. Schaefer, A. Szczurek, V. Fierro, and A. Celzard, "Electromagnetic properties of polyurethane template-based carbon foams in Ka-band," Physica Scripta, Vol. 90, 094019, 2015.
doi:10.1088/0031-8949/90/9/094019
26. Castel, V. and C. Brosseau, "Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy," Applied Physics Letters, Vol. 92, 233110, 2008.
doi:10.1063/1.2943153
27., http://nano.bsu.by/products/mwcnt.
28. Shuba, M. V., G. Y. Slepyan, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, "Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes," Phys. Rev. B, Vol. 79, 155403, 2009.
doi:10.1103/PhysRevB.79.155403