Vol. 66
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-07-18
Exploring Carbon Nanotubes/BaTiO3 /Fe3O4 Nanocomposites as Microwave Absorbers
By
Progress In Electromagnetics Research C, Vol. 66, 77-85, 2016
Abstract
We report the modelling and characterization of microwave absorbing materials specially designed for 26-37 GHz frequency range (Ka-band). Composite materials based on carbon nanotubes/BaTiO3/Fe3O4 in a phosphate ceramic matrix were produced, and their electromagnetic response was investigated. Both theoretical and experimental results demonstrate that this material can absorb up to 100% of the power of an incident plane wave at a normal incidence angle. The physics underlying such absorption level is discussed in terms of refractive index of the material.
Citation
Dzmitry Bychanok, Gleb Gorokhov, Darya Meisak, Artyom Plyushch, Polina Kuzhir, Alexey Sokal, Konstantin Lapko, Angela Sanchez-Sanchez, Vanessa Fierro, Alain Celzard, Cameron Gallagher, Alastair P. Hibbins, Feodor Y. Ogrin, and Christian Brosseau, "Exploring Carbon Nanotubes/BaTiO3 /Fe3O4 Nanocomposites as Microwave Absorbers," Progress In Electromagnetics Research C, Vol. 66, 77-85, 2016.
doi:10.2528/PIERC16051106
References

1. Qiang, C., J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, and P. Xu, "Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles," Journal of Alloys and Compounds, Vol. 506, 93-97, 2010.
doi:10.1016/j.jallcom.2010.06.193

2. Tsay, C. Y., R. B. Yang, D. S. Hung, Y. H. Hung, Y. D. Yao, and C. K. Lin, "Investigation on electromagnetic and microwave absorbing properties of La0.7Sr0.3MnO3-d/carbon nanotube composites," Journal of Applied Physics, Vol. 107, 09A502, 2010.
doi:10.1063/1.3337681

3. Danlee, Y., I. Huynen, and C. Bailly, "Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes," Applied Physics Letters, Vol. 100, 213105, 2012.
doi:10.1063/1.4717993

4. Duan, M. C., L. M. Yu, L. M. Sheng, K. An, W. Ren, and X. L. Zhao, "Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite," Journal of Applied Physics, Vol. 115, 174101, 2014.
doi:10.1063/1.4873636

5. Kim, S.-T. and S.-S. Kim, "Microwave absorbing properties of hollow microspheres plated with magnetic metal films," Journal of Applied Physics, Vol. 115, 17A528, 2014.
doi:10.1063/1.4868916

6. El-Hakim, H. A., K. R. Mahmoud, and A. Abdelaziz, "Design of compact double-layer microwave absorber for X-Ku bands using genetic algorithm," Progress In Electromagnetics Research B, Vol. 65, 157-168, 2016.
doi:10.2528/PIERB15111702

7. Zhuravlev, V., V. Suslyaev, E. Korovin, and K. Dorozhkin, "Electromagnetic waves absorbing characteristics of composite material containing carbonyl iron particles," Materials Sciences and Applications, Vol. 5, 803-811, 2014.
doi:10.4236/msa.2014.511080

8. Ipatov, M., V. Zhukova, L. V. Panina, and A. Zhukov, "Ferromagnetic microwires composite metamaterials with tuneable microwave electromagnetic parameters," PIERS Proceedings, Vol. 5, 586-590, Beijing, China, March 23–27, 2009.

9. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.
doi:10.2528/PIERB11071108

10. Bychanok, D., S. Li, A. Sanchez-Sanchez, G. Gorokhov, P. Kuzhir, F. Ogrin, A. Pasc, T. Ballweg, K. Mandel, A. Szczurek, V. Fierro, and A. Celzard, "Hollow carbon spheres in microwaves: Bioinspired absorbing coating," Applied Physics Letters, Vol. 108, 013701, 2016.
doi:10.1063/1.4938537

11. Cao, M.-S., W.-L. Song, Z.-L. Hou, B.Wen, and J. Yuan, "The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites," Carbon, Vol. 48, 788-796, 2010.
doi:10.1016/j.carbon.2009.10.028

12. Sarto, M. S., A. G. D’Aloia, A. Tamburrano, and G. De Bellis, "Synthesis, modeling, and experimental characterization of graphite nanoplatelet-based composites for EMC applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 17-27, 2012.
doi:10.1109/TEMC.2011.2178853

13. Buchner, R., J. Barthel, and J. Stauber, "The dielectric relaxation of water between 0◦C and 35◦C," Chemical Physics Letters, Vol. 306, 57-63, 1999.
doi:10.1016/S0009-2614(99)00455-8

14. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," Photonics Journal, Vol. 1, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288

15. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301–24, 2012.

16. Brosseau, C., P. Molinie, F. Boulic, and F. Carmona, "Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites," Journal of Applied Physics, Vol. 89, 8297-8310, 2001.
doi:10.1063/1.1371938

17. Bychanok, D., P. Kuzhir, S. Maksimenko, S. Bellucci, and C. Brosseau, "Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave," Journal of Applied Physics, Vol. 113, 124103–6, 2013.
doi:10.1063/1.4798296

18. Kuzhir, P., A. Paddubskaya, D. Bychanok, A. Nemilentsau, M. Shuba, A. Plusch, S. Maksimenko, S. Bellucci, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys, "Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding," Thin Solid Films, Carbon- or Nitrogen-containing Nanostructured Composite Films, Vol. 519, 4114-4118, 2011.

19. Apanasevich, N., A. Sokal, K. Lapko, A. Kudlash, V. Lomonosov, A. Plyushch, P. Kuzhir, J. Macutkevic, J. Banys, and A. Okotrub, "Phosphate ceramics — Carbon nanotubes composites: Liquid aluminum phosphate vs solid magnesium phosphate binder," Ceramics International, Vol. 41, 12147-12152, 2015.
doi:10.1016/j.ceramint.2015.06.033

20. Kanygin, M. A., O. V. Sedelnikova, I. P. Asanov, L. G. Bulusheva, A. V. Okotrub, P. P. Kuzhir, A. O. Plyushch, S. A. Maksimenko, K. N. Lapko, A. A. Sokol, O. A. Ivashkevich, and P. Lambin, "Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites," Journal of Applied Physics, Vol. 113, 144315, 2013.
doi:10.1063/1.4800897

21. Plyushch, A., D. Bychanok, P. Kuzhir, S. Maksimenko, K. Lapko, A. Sokol, J. Macutkevic, J. Banys, F. Micciulla, A. Cataldo, and S. Bellucci, "Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application," Phys. Status Solidi A, Vol. 211, 2580-2585, 2014.
doi:10.1002/pssa.201431306

22. Plyushch, A. O., A. A. Sokol, K. N. Lapko, P. P. Kuzhir, Y. V. Fedoseeva, A. I. Romanenko, O. B. Anikeeva, L. G. Bulusheva, and A. V. Okotrub, "Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes," Physics of the Solid State, Vol. 56, 2537-2542, 2014.
doi:10.1134/S1063783414120257

23. Gaylor, K., "Radar absorbing materials-mechanisms and materials," Materials Research Labs Ascot Vale (Australia), No. MRL-TR-89-1, 1989.

24. Baker-Jarvis, J., M. Janezic, J. J. Grosvenor, and R. Geyer, "Transmission/reflection and shortcircuit line methods for measuring permittivity and permeability," NIST Technical Note, 1355, 1993.

25. Bychanok, D., A. Plyushch, K. Piasotski, A. Paddubskaya, S. Voronovich, P. Kuzhir, S. Baturkin, A. Klochkov, E. Korovin, M. Letellier, S. Schaefer, A. Szczurek, V. Fierro, and A. Celzard, "Electromagnetic properties of polyurethane template-based carbon foams in Ka-band," Physica Scripta, Vol. 90, 094019, 2015.
doi:10.1088/0031-8949/90/9/094019

26. Castel, V. and C. Brosseau, "Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy," Applied Physics Letters, Vol. 92, 233110, 2008.
doi:10.1063/1.2943153

27., http://nano.bsu.by/products/mwcnt.

28. Shuba, M. V., G. Y. Slepyan, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, "Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes," Phys. Rev. B, Vol. 79, 155403, 2009.
doi:10.1103/PhysRevB.79.155403