Research Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Nuclear Problems Belarusian State University
Belarus
HomepageResearch Institute for Physical Chemical Problems of the Belarusian State University
Belarus
HomepageResearch Institute for Physical Chemical Problems of the Belarusian State University
Belarus
Homepage1. Qiang, C., J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, and P. Xu, "Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles," Journal of Alloys and Compounds, Vol. 506, 93-97, 2010.
doi:10.1016/j.jallcom.2010.06.193 Google Scholar
2. Tsay, C. Y., R. B. Yang, D. S. Hung, Y. H. Hung, Y. D. Yao, and C. K. Lin, "Investigation on electromagnetic and microwave absorbing properties of La0.7Sr0.3MnO3-d/carbon nanotube composites," Journal of Applied Physics, Vol. 107, 09A502, 2010.
doi:10.1063/1.3337681 Google Scholar
3. Danlee, Y., I. Huynen, and C. Bailly, "Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes," Applied Physics Letters, Vol. 100, 213105, 2012.
doi:10.1063/1.4717993 Google Scholar
4. Duan, M. C., L. M. Yu, L. M. Sheng, K. An, W. Ren, and X. L. Zhao, "Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite," Journal of Applied Physics, Vol. 115, 174101, 2014.
doi:10.1063/1.4873636 Google Scholar
5. Kim, S.-T. and S.-S. Kim, "Microwave absorbing properties of hollow microspheres plated with magnetic metal films," Journal of Applied Physics, Vol. 115, 17A528, 2014.
doi:10.1063/1.4868916 Google Scholar
6. El-Hakim, H. A., K. R. Mahmoud, and A. Abdelaziz, "Design of compact double-layer microwave absorber for X-Ku bands using genetic algorithm," Progress In Electromagnetics Research B, Vol. 65, 157-168, 2016.
doi:10.2528/PIERB15111702 Google Scholar
7. Zhuravlev, V., V. Suslyaev, E. Korovin, and K. Dorozhkin, "Electromagnetic waves absorbing characteristics of composite material containing carbonyl iron particles," Materials Sciences and Applications, Vol. 5, 803-811, 2014.
doi:10.4236/msa.2014.511080 Google Scholar
8. Ipatov, M., V. Zhukova, L. V. Panina, and A. Zhukov, "Ferromagnetic microwires composite metamaterials with tuneable microwave electromagnetic parameters," PIERS Proceedings, Vol. 5, 586-590, Beijing, China, March 23–27, 2009. Google Scholar
9. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.
doi:10.2528/PIERB11071108 Google Scholar
10. Bychanok, D., S. Li, A. Sanchez-Sanchez, G. Gorokhov, P. Kuzhir, F. Ogrin, A. Pasc, T. Ballweg, K. Mandel, A. Szczurek, V. Fierro, and A. Celzard, "Hollow carbon spheres in microwaves: Bioinspired absorbing coating," Applied Physics Letters, Vol. 108, 013701, 2016.
doi:10.1063/1.4938537 Google Scholar
11. Cao, M.-S., W.-L. Song, Z.-L. Hou, B.Wen, and J. Yuan, "The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites," Carbon, Vol. 48, 788-796, 2010.
doi:10.1016/j.carbon.2009.10.028 Google Scholar
12. Sarto, M. S., A. G. D’Aloia, A. Tamburrano, and G. De Bellis, "Synthesis, modeling, and experimental characterization of graphite nanoplatelet-based composites for EMC applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, 17-27, 2012.
doi:10.1109/TEMC.2011.2178853 Google Scholar
13. Buchner, R., J. Barthel, and J. Stauber, "The dielectric relaxation of water between 0◦C and 35◦C," Chemical Physics Letters, Vol. 306, 57-63, 1999.
doi:10.1016/S0009-2614(99)00455-8 Google Scholar
14. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," Photonics Journal, Vol. 1, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288 Google Scholar
15. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301–24, 2012. Google Scholar
16. Brosseau, C., P. Molinie, F. Boulic, and F. Carmona, "Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites," Journal of Applied Physics, Vol. 89, 8297-8310, 2001.
doi:10.1063/1.1371938 Google Scholar
17. Bychanok, D., P. Kuzhir, S. Maksimenko, S. Bellucci, and C. Brosseau, "Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave," Journal of Applied Physics, Vol. 113, 124103–6, 2013.
doi:10.1063/1.4798296 Google Scholar
18. Kuzhir, P., A. Paddubskaya, D. Bychanok, A. Nemilentsau, M. Shuba, A. Plusch, S. Maksimenko, S. Bellucci, L. Coderoni, F. Micciulla, I. Sacco, G. Rinaldi, J. Macutkevic, D. Seliuta, G. Valusis, and J. Banys, "Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding," Thin Solid Films, Carbon- or Nitrogen-containing Nanostructured Composite Films, Vol. 519, 4114-4118, 2011. Google Scholar
19. Apanasevich, N., A. Sokal, K. Lapko, A. Kudlash, V. Lomonosov, A. Plyushch, P. Kuzhir, J. Macutkevic, J. Banys, and A. Okotrub, "Phosphate ceramics — Carbon nanotubes composites: Liquid aluminum phosphate vs solid magnesium phosphate binder," Ceramics International, Vol. 41, 12147-12152, 2015.
doi:10.1016/j.ceramint.2015.06.033 Google Scholar
20. Kanygin, M. A., O. V. Sedelnikova, I. P. Asanov, L. G. Bulusheva, A. V. Okotrub, P. P. Kuzhir, A. O. Plyushch, S. A. Maksimenko, K. N. Lapko, A. A. Sokol, O. A. Ivashkevich, and P. Lambin, "Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites," Journal of Applied Physics, Vol. 113, 144315, 2013.
doi:10.1063/1.4800897 Google Scholar
21. Plyushch, A., D. Bychanok, P. Kuzhir, S. Maksimenko, K. Lapko, A. Sokol, J. Macutkevic, J. Banys, F. Micciulla, A. Cataldo, and S. Bellucci, "Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application," Phys. Status Solidi A, Vol. 211, 2580-2585, 2014.
doi:10.1002/pssa.201431306 Google Scholar
22. Plyushch, A. O., A. A. Sokol, K. N. Lapko, P. P. Kuzhir, Y. V. Fedoseeva, A. I. Romanenko, O. B. Anikeeva, L. G. Bulusheva, and A. V. Okotrub, "Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes," Physics of the Solid State, Vol. 56, 2537-2542, 2014.
doi:10.1134/S1063783414120257 Google Scholar
23. Gaylor, K., "Radar absorbing materials-mechanisms and materials," Materials Research Labs Ascot Vale (Australia), No. MRL-TR-89-1, 1989. Google Scholar
24. Baker-Jarvis, J., M. Janezic, J. J. Grosvenor, and R. Geyer, "Transmission/reflection and shortcircuit line methods for measuring permittivity and permeability," NIST Technical Note, 1355, 1993. Google Scholar
25. Bychanok, D., A. Plyushch, K. Piasotski, A. Paddubskaya, S. Voronovich, P. Kuzhir, S. Baturkin, A. Klochkov, E. Korovin, M. Letellier, S. Schaefer, A. Szczurek, V. Fierro, and A. Celzard, "Electromagnetic properties of polyurethane template-based carbon foams in Ka-band," Physica Scripta, Vol. 90, 094019, 2015.
doi:10.1088/0031-8949/90/9/094019 Google Scholar
26. Castel, V. and C. Brosseau, "Magnetic field dependence of the effective permittivity in BaTiO3/Ni nanocomposites observed via microwave spectroscopy," Applied Physics Letters, Vol. 92, 233110, 2008.
doi:10.1063/1.2943153 Google Scholar
27., http://nano.bsu.by/products/mwcnt.
28. Shuba, M. V., G. Y. Slepyan, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, "Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes," Phys. Rev. B, Vol. 79, 155403, 2009.
doi:10.1103/PhysRevB.79.155403 Google Scholar