Vol. 51
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-10-13
Extension of Thin Wire Techniques in the FDTD Method for Debye Media
By
Progress In Electromagnetics Research M, Vol. 51, 9-17, 2016
Abstract
There are applications of the finite difference time domain (FDTD) method, which need to model thin wires in dispersive media. However, existing thin wire techniques in the FDTD method are developed only for the conductive and dielectric media. The article presents a modification of oblique thin wire formalism proposed by Guiffaut et al. and a minor modification for the technique proposed by Railton et al. for applications with Debye media. The modifications are based on auxiliary differential equation (ADE) method. The modifications are validated by calculations of grounding potential rise (GPR) of a horizontal electrode buried in soil with dispersive properties.
Citation
Dmitry Kuklin, "Extension of Thin Wire Techniques in the FDTD Method for Debye Media," Progress In Electromagnetics Research M, Vol. 51, 9-17, 2016.
doi:10.2528/PIERM16081804
References

1. Kuklin, D., "Choosing configurations of transmission line tower grounding by back flashover probability value," Front. Energy, Vol. 10, No. 2, 213-226, 2016.
doi:10.1007/s11708-016-0398-6

2. Alipio, R. and S. Visacro, "Frequency dependence of soil parameters: effect on the lightning response of grounding electrodes," IEEE Trans. Electromagn. Compat., Vol. 55, No. 1, 132-139, 2013.
doi:10.1109/TEMC.2012.2210227

3. Diaz, L., C. Miry, A. Reineix, C. Guiffaut, and A. Tatematsu, "FDTD transient analysis of grounding grids. A comparison of two different thin wire models," 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), 501-506, 2015.
doi:10.1109/ISEMC.2015.7256213

4. De Conti, A. and S. Visacro, "Analytical representation of single- and double-peaked lightning current waveforms," IEEE Trans. Electromagn. Compat., Vol. 49, No. 2, 448-451, 2007.
doi:10.1109/TEMC.2007.897153

5. Visacro, S. and R. Alipio, "Frequency dependence of soil parameters: experimental results, predicting formula and influence on the lightning response of grounding electrodes," IEEE Trans. Power Delivery, Vol. 27, No. 2, 927-935, 2012.
doi:10.1109/TPWRD.2011.2179070

6. Kelley, D. F., T. J. Destan, and R. J. Luebbers, "Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 1999-2005, 2007.
doi:10.1109/TAP.2007.900230

7. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microw. Guided Wave Lett., Vol. 7, No. 5, 121-123, 1997.
doi:10.1109/75.569723

8. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Trans. Electromagn. Compat., Vol. 23, No. 2, 88-97, 1981.
doi:10.1109/TEMC.1981.303899

9. Guiffaut, C. and A. Reineix, "Cartesian shift thin wire formalism in the FDTD method with multiwire junctions," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2658-2665, 2010.
doi:10.1109/TAP.2010.2050427

10. Ledfelt, G., "A stable subcell model for arbitrarily oriented thin wires for the FDTD method," Int. J. Numer. Model. Electron. Netw. Devices Fields, Vol. 15, No. 5-6, 503-515, 2002.
doi:10.1002/jnm.466

11. Edelvik, F., "A new technique for accurate and stable modeling of arbitrarily oriented thin wires in the FDTD method," IEEE Trans. Electromagn. Compat., Vol. 45, No. 2, 416-423, 2003.
doi:10.1109/TEMC.2003.811294

12. Guiffaut, C., A. Reineix, and B. Pecqueux, "New oblique thin wire formalism in the FDTD method with multiwire junctions," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1458-1466, 2012.
doi:10.1109/TAP.2011.2180304

13. Umashankar, K. and A. Taflove, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity," IEEE Trans. Antennas Propag., Vol. 35, No. 11, 1248-1257, 1987.
doi:10.1109/TAP.1987.1144000

14. Mäkinen, R. M., J. S. Juntunen, and M. A. Kivikoski, "An improved thin-wire model for FDTD," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 5, 1245-1255, 2002.
doi:10.1109/22.999136

15. Noda, T. and S. Yokoyama, "Thin wire representation in finite difference time domain surge simulation," IEEE Trans. Power Delivery, Vol. 17, No. 3, 840-847, 2002.
doi:10.1109/TPWRD.2002.1022813

16. Railton, C. J., D. L. Paul, I. J. Craddock, and G. S. Hilton, "The treatment of geometrically small structures in FDTD by the modification of assigned material parameters," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4129-4136, 2005.
doi:10.1109/TAP.2005.860008

17. Taniguchi, Y., Y. Baba, N. Nagaoka, and A. Ametani, "An improved thin wire representation for FDTD computations," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3248-3252, 2008.
doi:10.1109/TAP.2008.929447

18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.

19. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.