1. Girka, V., I. Girka, and M. Thumm, Surface Flute Waves in Plasmas: Theory and Applications, Springer, 2014.
doi:10.1007/978-3-319-02027-3
2. Gradov, O. M. and L. Stenflo, "Linear theory of a cold bounded plasma," Physics Reports - Review Section of Phys. Lett., Vol. 94, 111-137, 1983. Google Scholar
3. Gradov, O. M. and L. Stenflo, "Theory of nonlinear plasma surface waves," Journal of Plasma Physics, Vol. 65, 73-77, 2001.
doi:10.1017/S0022377801008996 Google Scholar
4. Kudrin, A. V., E. Y. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Insulated cylindrical antenna in a cold magnetoplasma," Progress In Electromagnetics Research, Vol. 53, 135-166, 2005.
doi:10.2528/PIER04090101 Google Scholar
5. Alexeff, I., T. Anderson, E. Farshi, et al. "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, 057104, 2008.
doi:10.1063/1.2919157 Google Scholar
6. Anderson, T., Plasma Antennas, Artech House, 2011.
7. Aliev, Y. M., H. Schluter, and A. Shivarova, Guided-wave-produced Plasmas, Springer, 2000.
doi:10.1007/978-3-642-57060-5
8. Sugai, H., I. Ghanashev, and M. Nagatsu, "High-density flat plasma production based on surface waves," Plasma Sources Science and Technology, Vol. 7, 192-205, 1998.
doi:10.1088/0963-0252/7/2/014 Google Scholar
9. Ederra, I., J. C. Iriarte, R. Gonzalo, and P. de Maagt, "Surface waves of finite size electromagnetic band gap woodpile structures," Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011. Google Scholar
10. Anders, A., "Metal plasmas for the fabrication of nanostructures," Physics D: Applied Physics, Vol. 40, 2272-2284, 2007.
doi:10.1088/0022-3727/40/8/S06 Google Scholar
11. Morrow, R., D. R. McKenzie, and M. M. Bilek, "Electric field effects on adsorption/desorption of proteins and colloidal particles on a gold film observed using surface plasmon resonance," Physica B: Condensed Matter, Vol. 394, 203-207, 2007.
doi:10.1016/j.physb.2006.12.054 Google Scholar
12. Feltis, B. N., B. A. Sexton, F. L. Glenn, et al. "A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents," Biosensors and Bioelectronics, Vol. 23, 1131-1136, 2008.
doi:10.1016/j.bios.2007.11.005 Google Scholar
13. Girka, V. O., I. O. Girka, and R. D. Sydora, "Azimuthally non-symmetric surface waves propagating in metal waveguides filled with isotropic plasma," Progress In Electromagnetics Research B, Vol. 61, 87-98, 2014.
doi:10.2528/PIERB14062902 Google Scholar
14. Girka, V. O., I. O. Girka, A. N. Kondratenko, and V. I. Tkachenko, "Azimuthal surface waves of magnetoactive plasma wavequides," Soviet Journal of Communications Technology and Electronics, Vol. 33, 37-41, 1988. Google Scholar
15. Girka, V. O. and I. O. Girka, "Coupled azimuthal surface waves in a nonuniform current - carrying plasma cylinder," Soviet Journal of Communications Technology and Electronics, Vol. 37, 23-29, 1992. Google Scholar
16. Girka, V. O. and I. O. Girka, "Influence of plasma inhomogeneity on the spectra of azimuthal surface waves," Radiophysics and Quantum Electronics, Vol. 33, 516-517, 1990. Google Scholar
17. Girka, V. O. and I. O. Girka, "Azimuthal surface waves in a nonuniform plasma cylinder," Radiophysics and Quantum Electronics, Vol. 34, 324-328, 1991.
doi:10.1007/BF01080766 Google Scholar
18. Girka, V. O. and I. O. Girka, "Asymmetric long-wavelength surface modes of isotropic plasma waveguides," Plasma Physics Reports, Vol. 28, 682-689, 2002.
doi:10.1134/1.1501325 Google Scholar
19. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 1972.