1. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, Jul. 2009.
doi:10.1109/TPEL.2009.2017195 Google Scholar
2. Elmore, G., "Method and apparatus for launching a surfacewave onto a single conductor transmission line using a slotted flared cone,", U.S. Patent 7,009,471, 2013. Google Scholar
3. Elmore, G., "Surface wave transmission system over a single conductor having E-fields terminating along the conductor,", U.S. Patent 7,567,154, 2009. Google Scholar
4. Elmore, G., "E-Line," Corridor Systems, Jul. 27, 2009. Google Scholar
5. Sommerfeld, A., "Über die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes," Ann. der Physik und Chemie, Vol. 67, 233-290, Dec. 1899, (Tr. Propagation of electro-dynamic waves along a cylindric conductor). Google Scholar
6. Sommerfeld, A., "Über die Ausbreitung der Wellen in der drahtlosen Telegraphie," Annalen der Physik, Vol. 28, 665-736, Mar. 1909, (Tr. About the Propagation of waves in wireless telegraphy).
doi:10.1002/andp.19093330402 Google Scholar
7. Sommerfeld, A., "Propagation of waves in wireless telegraphy," Ann. Phys., Vol. 81, 1153-1367, 1926. Google Scholar
8. Sommerfeld, A., Partial Differential Equations in Physics (English version), Ch. 6 - ``Problems of Radio,'' Academic Press Inc., New York, 1949.
9. Goubau, G., "Surface waves and their application to transmission lines," J. Appl. Phys., Vol. 21, 1119, Nov. 1950. Google Scholar
10. Goubau, G., Zeitschrift f¨ur Angewandte Physik, Vol. 3, Nrs. 3/4, 103, 1951.
11. George, J. E., "Goubau, Surface wave transmission line,", U.S. Patent 2,685,068, 1954. Google Scholar
12. Goubau, G. J. E., "Launching and receiving of surface waves,", U.S. Patent 2,921,277, 1960. Google Scholar
13. Jaisson, D., "Simple formula for the wave number of the Goubau line," Journal of Electromagnetics, Vol. 34, No. 2, 85, Taylor & Francis Group, LLC, Feb. 2014.
doi:10.1080/02726343.2013.863672 Google Scholar
14. Siart, U., S. Adrian, and T. Eibert, "Properties of axial surface waves along dielectrically coated conducting cylinders," Adv. Radio Sci., 79-84, 2012.
doi:10.5194/ars-10-79-2012 Google Scholar
15. Gunn, W. F., "Application possibilities of a surface wave mode," The Marconi Review, Vol. 15, No. 107, 145-166, 1952. Google Scholar
16. Avramenko, S. and K. Avramenko, "Method and apparatus for single line electrical transmission,", U.S. Patent 6,104,107, 2000. Google Scholar
17. Tesla, N., On Light and Other High Frequency Phenomena, Vol. CXXXVI, No. 2, Feb. 1893.
18. Akalin, T., "Single-wire transmission lines at terahertz frequencies," IEEE Transactions on Microwave Theory (IEEE-MTT), Vol. 54, No. 6, 2762, Jun. 2006.
doi:10.1109/TMTT.2006.874890 Google Scholar
19. Wiltse, J. C., "Guided-wave propagation on a cylindrical conductor at millimeter-wave or terahertz frequencies," Proc. SPIE 6549, Terahertz for Military and Security Applications V, 65490G, May 04, 2007, doi:10.1117/12.720110. Google Scholar
20. Barlow, H. M., "The relative power-carrying capacity of high frequency waveguides," Proceedings of the IEE - Part III: Radio and Communication Engineering, Vol. 99, No. 57, Jan. 1952.
doi:10.1049/pi-3.1952.0005 Google Scholar
21. Liu, L. W. Y., S. Ge, Q. Zhang, and Y. Chen, "Capturing cosmic rays using surface wave technologies," Proceedings of 2016 IEEE ICPRE, Part II, 644-647, 2016. Google Scholar
22. Miskovsky, N. M., P. H. Cutler, A. Mayer, B. L. Weiss, B. Willis, T. E. Sullivan, and P. B. Lerner, "Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: A new approach," Journal of Nanotechnology, Vol. 2012, 19 pages, Article ID 512379, 2012. Google Scholar