Vol. 77
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-09-06
Low-Profile Dual-Band Superstrate Antenna Using Metasurface
By
Progress In Electromagnetics Research C, Vol. 77, 175-184, 2017
Abstract
A low-profile superstrate antenna operated at dual-band is proposed using a metasurface (MTS). In order to design the proposed antenna, the MTS as a partially reflective surface (PRS) has a zero degree reflection phase at dual-band and is composed of a substrate, periodic metallic square patches, and rings on one side and periodic metallic meshes on the other side. To satisfy the resonance condition of Fabry-Perot cavity (FPC) at a certain frequency and height of PRS from the ground plane, the reflection phase of the MTS should be controlled by the dimension of the substrate, square patch, square ring, and mesh. In this paper, the planar radiator having a ring patch and a rectangular patch is employed and designed to operate at 2.1 GHz and 5.8 GHz. Also, the height of MTS from the ground plane is 12 mm, which corresponds to about 0.08λ0 and 0.23λ0 at operation frequencies of radiator, respectively. As a result, the gain improvements at 2.1 GHz and 5.8 GHz are measured to be 4.1 dB and 3.2 dB, respectively.
Citation
Jae-Gon Lee, and Jeong-Hae Lee, "Low-Profile Dual-Band Superstrate Antenna Using Metasurface," Progress In Electromagnetics Research C, Vol. 77, 175-184, 2017.
doi:10.2528/PIERC17060603
References

1. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. on Antennas and Propagation, Vol. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455

2. Jackson, D. R. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. on Antennas and Propagation, Vol. 33, No. 9, 976-987, Sep. 1985.
doi:10.1109/TAP.1985.1143709

3. Yang, H. Y. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. on Antennas and Propagation, Vol. 35, No. 7, 860-863, Jul. 1987.
doi:10.1109/TAP.1987.1144186

4. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. on Microwave Theory and Technique, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

5. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles," IEEE Trans. on Electromagnetic Compatibility, Vol. 47, No. 4, 853-865, Jan. 2005.
doi:10.1109/TEMC.2005.853719

6. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 1, 209-214, Jan. 2005.
doi:10.1109/TAP.2004.840528

7. Zhou, L., H. Li, Y. Qin, Z. Wei, and C. T. Chan, "Directive emissions from subwavelength metamaterial-based cavities," Applied Physics Letters, Vol. 86, 2005.
doi:10.1063/1.1844039

8. Ourir, A., A. Lustrac, and J. Lourtioz, "All-metamaterial-based subwavelength cavities for ultrathin directive antennas," Applied Physics Letters, Vol. 88, 2006.

9. Yahiaoui, R., S. N. Burokur, and A. de Lustrac, "Enhanced directivity of ultra-thin metamaterialbased cavity antenna fed by multisource," Electronics Letters, Vol. 45, No. 16, 814-816, 2009.
doi:10.1049/el.2009.0641