Vol. 70
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-16
An Angular Stable Dual-Band Frequency Selective Surface with Closely Spaced Resonances
By
Progress In Electromagnetics Research Letters, Vol. 70, 1-6, 2017
Abstract
We present an angular stable dual-band frequency selective surface (FSS) in this paper. By placing anchor-shaped elements with different structural parameters along x-axis alternately within hexagonal wire grid, the proposed FSS can provide two closely spaced passbands. And the resonant frequency ratios are only 1.16 and 1.19 for TE and TM polarizations, respectively. In addition, the proposed FSS has stable frequency response under oblique incidence, and resonant frequency deviation is below 0.5% within 60° incident angle. An FSS prototype is fabricated and measured for further verification, and good agreements between the simulated and measured results can be observed.
Citation
Ning Liu, Xian-Jun Sheng, Jing-Jing Fan, and Dongming Guo, "An Angular Stable Dual-Band Frequency Selective Surface with Closely Spaced Resonances," Progress In Electromagnetics Research Letters, Vol. 70, 1-6, 2017.
doi:10.2528/PIERL17070302
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

2. Yan, M., et al. "A tri-band, highly selective, bandpass FSS using cascaded multilayer loop array," IEEE Trans. Antennas Propag., Vol. 64, No. 5, 2046-2049, 2016.
doi:10.1109/TAP.2016.2536175

3. Hill, R. A. and B. A. Munk, "The effect of perturbating a frequency selective surface and its relation to the design of a dual-band surface," IEEE Trans. Antennas Propag, Vol. 44, No. 3, 368-374, 1996.
doi:10.1109/8.486306

4. Werner, D. H. and D. Lee, "Design of dual-polarised multiband frequency selective surfaces using fractal elements," Electron. Lett., Vol. 36, No. 6, 487-488, 2000.
doi:10.1049/el:20000457

5. Hu, X.-D., et al. "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1374-1377, 2009.

6. Wu, T. K. and S. W. Lee, "Multiband frequency selective surface with multi-ring patch elements," IEEE Trans. Antennas Propag., Vol. 42, No. 11, 1484-1490, Nov. 1994.

7.. Gao, M., S. M. A. M. H. Abadi, and N. Behdad, "A dual-band, inductively-coupled miniaturized-element frequency selective surface with higher-order bandpass response," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3729-3734, 2016.
doi:10.1109/TAP.2016.2580181

8. Chiu, C. N. and W. Y. Wang, "A dual-frequency miniaturized-element FSS with closely located resonances," IEEE Antennas Wireless Propag. Lett., Vol. 12, 163-165, 2013.
doi:10.1109/LAWP.2013.2245092

9. Sivasamy, R. and M. Kanagasabai, "A novel dual-band angular independent FSS with closely spaced frequency response," IEEE Microw.Wireless Compon. Lett., Vol. 25, No. 5, 298-300, 2015.
doi:10.1109/LMWC.2015.2410591

10. Xu, R., H. Zhao, Z. Zong, and W. Wu, "Dual-band capacitive loaded frequency selective surfaces with close band spacing," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 782-784, Dec. 2008.
doi:10.1109/LMWC.2008.2007697

11. Ghosh, S. and K. V. Srivastava, "An angularly stable dual-band fss with closely spaced resonances using miniaturized unit cell," IEEE Microw.Wireless Compon. Lett., Vol. 27, No. 3, 218-220, 2017.
doi:10.1109/LMWC.2017.2661683

12. Huang, F. C., C. N. Chiu, et al. "Very closely located dual-band frequency selective surfaces via identical resonant elements," IEEE Antennas Wireless Propag. Lett., Vol. 14, 414-417, 2015.
doi:10.1109/LAWP.2014.2366096

13. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency selective surfaces by a simple equivalent circuit approach," IEEE Antennas Propag. Mag., Vol. 54, No. 4, 35-48, Apr. 2012.
doi:10.1109/MAP.2012.6309153

14. Wang, D. S., Y. M. Chang, W. Q. Che, and Y. L. Chow, "Miniaturized dual-band loaded frequency selective surface with narrow band spacing," Proc. ICMMT, Vol. 5, Shenzhen, China, May 2012.