Vol. 61
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-12
Design of Double-Sided Linear Permanent Magnet Eddy Current Braking System
By
Progress In Electromagnetics Research M, Vol. 61, 61-73, 2017
Abstract
This work tries to design an Eddy current braking system that can brake at a very high speed within a short time or a short distance. In order to maximize the braking force and reduce lateral forces that can cause track deformation or damage, a double-sided linear permanent magnet Halbach array is proposed in this paper. Two possible designs (Type I and Type II) have been investigated. By using mathematic models, Finite Element Method (FEM) and experimental results, Type I design of a double-sided linear permanent magnet Halbach array is selected. Compared with the other design, Type I design can provide a much larger braking force. Moreover, the analysis also shows that the mathematic models can well capture the characteristic of Type I design. Thus these models are used to design a set of optimal design parameters such as the length and thickness of permanent magnet block to maximize flux density and braking force per unit mass of permanent magnets. The optimal performance is validated by using FEM.
Citation
Qiang Chen Ying Tan Guanchun Li Jie Li Iven M. Y. Mareels , "Design of Double-Sided Linear Permanent Magnet Eddy Current Braking System," Progress In Electromagnetics Research M, Vol. 61, 61-73, 2017.
doi:10.2528/PIERM17071804
http://www.jpier.org/PIERM/pier.php?paper=17071804
References

1. Perry, C. E., "Vertical impact tests of a proposed B-52 ejection seat cushion,", Human Effectiveness Directorate Wright-Patterson AFB OH 711 Human Performance Wing, 2007.
doi:10.3233/JAE-140019

2. Brinkley, J. W., et al., "Evaluation of a proposed F-4 ejection seat cushion by +Gz impact tests,", Armstrons LabWright-Patterson AFB OH Crew Systems Directorte, 1993.
doi:10.1109/JPROC.2009.2030231

3. Turnbull, D., et al., "Soft sled test capability at the holloman high speed test track,", US Air Force T&E Days 1708, 2010.

4. Yazdanpanah, R. and M. Mirsalim, "Analytical study of axial-flux hybrid excitation eddy current brakes," International Journal of Applied Electromagnetics and Mechanics, Vol. 47, No. 4, 885-896, 2015.
doi:10.1143/JJAP.26.785

5. Thompson, M. T., "Practical issues in the use of NdFeB permanent magnets in maglev, motors, bearings, and eddy current brakes," Proceedings of the IEEE, Vol. 97, No. 11, 1758-1767, 2009.
doi:10.1063/1.335021

6. Wu, J., et al., "Hybrid brake method for electromagnetic launcher of unmanned aerial vehicle," Journal of National University of Defense Technology, Vol. 5, 010, 2015.
doi:10.1109/20.951256

7. Sagawa, M., et al., "NdFeB permanent magnet materials," Japanese Journal of Applied Physics, Vol. 26, No. 6R, 785, 1987.
doi:10.1109/TMAG.2002.803191

8. Halbach, K., "Application of permanent magnets in accelerators and electron storage rings," Journal of Applied Physics, Vol. 57, No. 8, 3605-3608, 1985.

9. Jang, S. M., S. S. Jeong, and S. D. Cha, "The application of linear Halbach array to eddy current rail brake system," IEEE Transactions on Magnetics, Vol. 37, No. 4, 2627-2629, 2001.
doi:10.1109/61.924821

10. Jang, S. M., S. H. Lee, and S. S. Jeong, "Characteristic analysis of eddy-current brake system using the linear Halbach array," IEEE Transactions on Magnetics, Vol. 38, No. 5, 2994-2996, 2002.

11. Wang, J. B., Y. H. Li, and L. G. Yan, "Study on applying the linear Halbach array to eddy current brake system," International Journal of Applied Electromagnetics and Mechanics, Vol. 33, No. 1, 111-118, 2010.

12. Wang, H. and K. L. Butler, "Finite element analysis of internal winding faults in distribution transformers," IEEE Transactions on Power Delivery, Vol. 16, No. 3, 422-428, 2001.
doi:10.1109/77.828377

13. Ansoft Corporation, , Maxwell Software, Elmwood Park, Ansoft Corporation, NJ, 1998.
doi:10.1109/TASC.2002.1018551

14. Post, R. F., "Inductrack demonstration model,", Lawrence Livermore National Lab., CA (United States), 1998.

15. Post, R. F. and D. D. Ryutov, "The inductrack: A simpler approach to magnetic levitation," IEEE Transactions on Applied Superconductivity, Vol. 10, No. 1, 901-904, 2000.

16. Kratz, R. and R. F. Post, "A null-current electro-dynamic levitation system," IEEE Transactions on Applied Superconductivity, Vol. 12, No. 1, 930-932, 2002.
doi:10.1109/20.877618

17. Post, R. F. and D. Ryutov, "The inductrack concept: A new approach to magnetic levitation,", Lawrence Livermore National Lab., CA (United States), 1996.
doi:10.1049/ip-epa:20045059

18. Gurol, S., et al., "Status of the general atomics low speed urban maglev technology development program,", Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2004.
doi:10.1109/20.996161

19. Davey, K., "Optimization shows Halbach arrays to be non-ideal for induction devices," IEEE Transactions on Magnetics, Vol. 36, No. 4, 1035-1038, 2000.

20. Han, Q., C. Ham, and R. Phillips, "Four- and eight-piece Halbach array analysis and geometry optimisation for maglev," IEE Proceedings - Electric Power Applications, Vol. 152, No. 3, 535-542, 2005.

21. Jafari-Shapoorabadi, R., A. Konrad, and A. N. Sinclair, "Comparison of three formulations for eddy-current and skin effect problems," IEEE Transactions on Magnetics, Vol. 38, No. 2, 617-620, 2002.