Vol. 60
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-09-21
Improved Bucking Coil Design in Helicopter Transient Electromagnetic System
By
Progress In Electromagnetics Research M, Vol. 60, 131-139, 2017
Abstract
The presence of the primary field in the helicopter transient electromagnetic system makes the dynamic range of the response signal so large that it is difficult to observe the secondary field. Therefore, a bucking coil is usually introduced to eliminate the primary field. However, in a traditional design, the size of the bucking coil increases with the size of the system, which makes the bucking coil hard to install, and opposite magnetic moment is large in huge systems. In this paper, a new bucking coil design for a helicopter transient electromagnetic system is proposed. Compared with the traditional design, the bucking coil diameter, total weight and total magnetic moment in two designs are calculated. The results show that the bucking coil we designed is more than 8 times smaller and 5 times lighter than that in the traditional design, which is easier for installation. The bucking moment impact is reduced to 0.03% of the total magnetic moment when the diameter of the transmitting coil increases to 35m, which improves the efficiency of the system. Then we analyze the requirement of manufactory precision and installation accuracy for the bucking coil in our design to get the best bucking result.
Citation
Pan Xiao, Zongyang Shi, Xin Wu, and Guangyou Fang, "Improved Bucking Coil Design in Helicopter Transient Electromagnetic System," Progress In Electromagnetics Research M, Vol. 60, 131-139, 2017.
doi:10.2528/PIERM17071902
References

1. Yin, C. C., B. Zhang, Y. H. Liu, X. Y. Ren, Y. F. Qi, Y. F. Pei, C. K. Qiu, X. Huang, W. Huang, J. J. Mia, and J. Cai, "Review on airborne em technology and developments," Chinese J. Geophys.-Ch., Vol. 58, No. 8, 2637-2653, 2015.

2. Schamper, C., E. Auken, and K. Srensen, "Coil response inversion for very early time modelling of helicopter-borne time-domain electromagnetic data and mapping of near-surface geological layers," Geophysical Prospecting, Vol. 62, No. 3, 658-674, 2014.
doi:10.1111/1365-2478.12104

3. Legault, J. M., C. Izarra, A. Prikhodko, S. K. Zhao, and E. M. Saadawi, "Helicopter EM (ZTEM-VTEM) survey results over the nuqrah copper-lead-zinc-gold sedex massive sulphide deposit in the western arabian shield, kingdom of saudi arabia," Exploration Geophysics, Vol. 46, No. 1, 36-48, 2015.
doi:10.1071/EG14028

4. Holladay, J. S., W. E. Doll, L. P. Beard, J. L. C. Lee, and D. T. Bell, "Uxo time-constant estimation from helicopter-borne tem data," Journal of Environmental and Engineering Geophysics, Vol. 11, No. 1, 43-52, 2006.
doi:10.2113/JEEG11.1.43

5. Palacky, G. J. and G. F. West, "Airborne electromagnetic methods," Electromagnetic Methods in Applied Geophysics, 811-880, 1991.
doi:10.1190/1.9781560802686.ch10

6. Shudong, C., W. Yujie, and Z. Shuang, "Bucking coil used in airborne transient electromagnetic survey," 2012 International Conference on Industrial Control and Electronics Engineering, 478-481, IEEE, 2015.

7. Witherly, K., R. Irvine, and B. Morrison, "The Geotech VTEM time domain helicopter EM system," Society of Exploration Geophysicists, 1217-1220, 2004.

8. Prikhodko, A., E. Morrison, A. Bagrianski, P. Kuzmin, P. Tishin, and J. Legault, "Evolution of VTEM technical solutions for effective exploration," Society of Exploration Geophysicists, 1-4, 2010.