1. Young, J. L., "A higher order FDTD method for EM propagation in a collisionless cold plasma," IEEE Trans. Antennas Propagat., Vol. 44, No. 9, 1283-1289, Sep. 1996.
doi:10.1109/8.535387 Google Scholar
2. Hadi, M. F. and M. Piket-May, "A modified FDTD(2, 4) scheme or modeling electrically large structures with high-phase accuracy," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 254-264, Feb. 1997.
doi:10.1109/8.560344 Google Scholar
3. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
4. Lan, K., Y. Liu, and W. Lin, "A higher order(2, 4) scheme for reducing dispersion in FDTD algorithm," IEEE Trans. Electromagnetic Compatibility, Vol. 41, No. 2, 160-165, May 1999.
doi:10.1109/15.765109 Google Scholar
5. Zhang, J. and Z. Chen, "Low-dispersive super high-order FDTD schemes," IEEE Antenna Propagat. Soc. Int. Symp., Vol. 3, 1510-1513, Salt Lake City, UT, Jul. 2000. Google Scholar
6. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time domain scheme using a symplectic integrator propagator," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 9, 1640-1648, Sep. 2001.
doi:10.1109/22.942578 Google Scholar
7. Prokopidis, K. P. and T. D. Tsiboukis, "Higher-order FDTD(2, 4) scheme for accurate simulations in lossy dielectrics," Electron. Lett., Vol. 39, No. 11, 835-836, May 2003.
doi:10.1049/el:20030545 Google Scholar
8. Shao, Z. H. and Z. X. Shen, "A generalized higher order finite-difference time-domain method and its application in guided-wave problems," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 856-861, Mar. 2003.
doi:10.1109/TMTT.2003.808627 Google Scholar
9. Chun, S. T. and J. Y. Choe, "A higher order FDTD method in integral formulation," IEEE Trans. Antennas Propagat., Vol. 53, No. 7, 2237-2246, Jul. 2005.
doi:10.1109/TAP.2005.850708 Google Scholar
10. Wang, S., Z. Shao, and G. Wen, "A modified high order FDTD method based on wave equation," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, 316-318, May 2007.
doi:10.1109/LMWC.2007.895685 Google Scholar
11. Chen, Y. W., Y. W. Liu, B. Chen, and P. Zhang, "A cylindrical higher order FDTD algorithm with PML and quasi PML," IEEE Trans. Antenna Propagat., Vol. 61, No. 9, 4695-4704, Sept. 2013.
doi:10.1109/TAP.2013.2267720 Google Scholar
12. Liu, Y. W., Y. W. Chen, P. Zhang, and Z. X. Liu, "A spherical higher-order FDTD algorithm with PML," Chinese Physics B, Vol. 23, No. 12, 2014. Google Scholar
13. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.
14. Guiffaut, C. and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas and Propagation Magazine, Vol. 43, 94-103, Apr. 2001.
doi:10.1109/74.924608 Google Scholar
15. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, Dec. 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
16. Roberts, A. R. and J. Joubert, "PML absorbing boundary condition for higher-order FDTD schemes," Electron. Lett., Vol. 33, No. 1, 32-34, 1997.
doi:10.1049/el:19970062 Google Scholar
17. Fujii, M., M. M. Tentzeris, and P. Russer, "Performance of nonlinear dispersive APML in high-order FDTD schemes," IEEE MTT-S International Microwave Symposium Digest, 1129-1132, Jun. 2003. Google Scholar
18. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-27, Jan. 2001.
doi:10.1109/7260.905957 Google Scholar