1. Gramotnev, D. K. and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Photonics, Vol. 4, No. 2, 83-91, 2010.
doi:10.1038/nphoton.2009.282 Google Scholar
2. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824, 2003.
doi:10.1038/nature01937 Google Scholar
3. Politano, A., et al. "Photothermal membrane distillation for seawater desalination," Adv. Mater., Vol. 29, No. 2, 2017.
doi:10.1002/adma.201603504 Google Scholar
4. Politano, A., et al. "When plasmonics meets membrane technology," Journal of Physics. Condensed Matter: An Institute of Physics Journal, Vol. 28, No. 36, 363003, 2016.
doi:10.1088/0953-8984/28/36/363003 Google Scholar
5. Wang, Y. P., et al. "Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates," Optics Express, Vol. 20, No. 17, 19006-1915, 2012.
doi:10.1364/OE.20.019006 Google Scholar
6. Sanders, A. W., et al. "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett., Vol. 6, No. 8, 1822, 2006.
doi:10.1021/nl052471v Google Scholar
7. Li, Z. P., et al. "Effect of a proximal substrate on plasmon propagation in silver nanowires," Physical Review B, Vol. 82, No. 24, 2762-2768, 2010. Google Scholar
8. Ditlbacher, H., et al. "Silver nanowires as surface plasmon resonators," Physical Review Letters, Vol. 95, No. 25, 257403, 2005.
doi:10.1103/PhysRevLett.95.257403 Google Scholar
9. Shegai, T., et al. "Unidirectional broadband light emission from supported plasmonic nanowires," Nano Lett., Vol. 11, No. 2, 706-711, 2011.
doi:10.1021/nl103834y Google Scholar
10. Li, Z., et al. "Directional light emission from propagating surface plasmons of silver nanowires," Nano Lett., Vol. 9, No. 12, 4383, 2009.
doi:10.1021/nl902651e Google Scholar
11. Fang, Y. R., et al. "Branched silver nanowires as controllable plasmon routers," Nano Lett., Vol. 10, No. 5, 1950, 2010.
doi:10.1021/nl101168u Google Scholar
12. Yan, R., et al. "Direct photonic-plasmonic coupling and routing in single nanowires," Proc. Natl. Acad. Sci. USA, Vol. 106, No. 50, 21045, 2009.
doi:10.1073/pnas.0902064106 Google Scholar
13. Wei, H., et al. "Cascaded logic gates in nanophotonic plasmon networks," Nat. Commun., Vol. 2, No. 2, 387, 2011.
doi:10.1038/ncomms1388 Google Scholar
14. Viti, L., et al. "Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 20474, 2016.
doi:10.1038/srep20474 Google Scholar
15. Viti, L., et al. "Plasma-wave Terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, No. 1, 80, 2016.
doi:10.1021/acs.nanolett.5b02901 Google Scholar
16. Li, Q. and M. Qiu, "Plasmonic wave propagation in silver nanowires: guiding modes or not?," Optics Express, Vol. 21, No. 7, 8587, 2013.
doi:10.1364/OE.21.008587 Google Scholar
17. Pan, D., et al. "Mode conversion of propagating surface plasmons in nanophotonic networks induced by structural symmetry breaking," Scientific Reports, Vol. 4, No. 4, 4993, 2014. Google Scholar
18. Zou, C. L., et al. "Plasmon modes of silver nanowire on a silica substrate," Applied Physics Letters, Vol. 97, No. 18, 189, 2010.
doi:10.1063/1.3509415 Google Scholar
19. Paschotta, R. D., Encyclopedia of Laser Physics and Technology, Wiley-VCH, 2008.
20. Suffczyński, M., "Optical properties of the noble metals," Physica Status Solidi (B), Vol. 4, No. 1, 3-29, 1964.
doi:10.1002/pssb.19640040102 Google Scholar