1. Al-Nuaim, N. A. and H. A. Toliyat, "A novel method for modeling dynamic air-gap eccentricity in synchronous machines based on modified winding function theory," IEEE Trans. Energy Convers., Vol. 13, No. 2, 156-162, 1998.
doi:10.1109/60.678979 Google Scholar
2. Barcaro, M., N. Bianchi, M. Guarnieri, and P. Alotto, "Optimization of interior pm motors with machaon rotor flux barriers," IEEE Trans. Magn., Vol. 47, No. 5, 958-961, 2011.
doi:10.1109/TMAG.2010.2073450 Google Scholar
3. Bolognagni, S., D. Bon, P. M. Dai, and N. Bianchi, "Torque harmonic compensation in a synchronous reluctance motor," IEEE Trans. Energy Convers., Vol. 23, No. 2, 466-473, June 2008.
doi:10.1109/TEC.2007.914357 Google Scholar
4. Bolognagni, S., D. Bon, P. M. Dai, and N. Bianchi, "Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and PM-assisted synchronous reluctance motors," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 921-928, 2009.
doi:10.1109/TIA.2009.2018960 Google Scholar
5. Vagati, A., G. Pellegrino, E. Armando, P. Guglielmi, and B. Boazzo, "Multipolar ferrite-assisted synchronous reluctance machines: A general design approach," IEEE Trans. Ind. Electron., Vol. 62, No. 2, 832-845, 2015.
doi:10.1109/TIE.2014.2349880 Google Scholar
6. Tutelea, L. N., L. Parsa, D. Dorrell, and I. Boldea, "Automotive electric propulsion systems with reduced or no permanent magnets: An overview," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5696-5711, October 2014. Google Scholar
7. Xu, B., L. Cai, and H. Guan, "Low-cost ferrite PM-assisted synchronous reluctance machine for electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5741-5748, October 2014. Google Scholar
8. Faiz, J. and I. Tabatabaei, "Extension of winding function theory for nonuniform air gap in electric machinery," IEEE Trans. Magn., Vol. 38, No. 6, 3654-3657, November 2002.
doi:10.1109/TMAG.2002.804805 Google Scholar
9. Kamper, M. J., S. Gerber, and E. Howard, "Flux barrier and skew design optimisation of reluctance synchronous machines," 2014 Int. Conf. on Electrical Machines (ICEM), 1186-1192, September 2014. Google Scholar
10. Ikaheimo, J., et al. "Synchronous high-speed reluctance machine with novel rotor construction," IEEE Trans. Ind. Electron., Vol. 61, No. 6, 2969-2975, June 2014.
doi:10.1109/TIE.2013.2253077 Google Scholar
11. Hsieh, M. F., H. F. Kuo, M. C. Tsai, and I. Lin, "Improved accuracy for performance evaluation of synchronous reluctance motor," IEEE Trans. Magn., No. 99, 1-1, 2015.
doi:10.1109/TMAG.2015.2457956 Google Scholar
12. Magnussen, F., C. Sadarangani, and R. R. Moghaddam, "Theoretical and experimental reevaluation of synchronous reluctance machine," IEEE Trans. Ind. Electron., Vol. 57, No. 1, 6-13, January 2010.
doi:10.1109/TIE.2009.2025286 Google Scholar
13. Magnussen, F., C. Sadarangani, and R. R. Moghaddam, "Novel rotor design optimization of synchronous reluctance machine for low torque ripple," 20th Int. Conf. Electrical Machines (ICEM), 720-724, September 2012. Google Scholar
14. Moghaddam, R.-R. and F. Gyllensten, "Novel high-performance SynRM design method: An easy approach for a complicated rotor topology," IEEE Trans. Ind. Electron., Vol. 61, No. 9, 5058-5065, September 2014.
doi:10.1109/TIE.2013.2271601 Google Scholar
15. Ooi, S., Y. Inoue, M. Sanada, and S. Morimoto, "Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5749-5756, October 2014. Google Scholar
16. Neti, P. and S. Nandi, "Determination of effective air-gap length of synchronous reluctance motors (SynchRel) from experimental data," IEEE Trans. Ind. Appl., Vol. 42, No. 2, 454-464, March 2006.
doi:10.1109/TIA.2005.863899 Google Scholar
17. Kim, S. I., J. P. Hong, J. H. Lee, and J. M. Park, "Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology," IEEE Trans. Magn., Vol. 42, No. 10, 3479-3481, October 2006. Google Scholar
18. Hiramto, K., S.Morimoto, Y. Takeda, and M. Sanada, "Torque ripple improvement for synchronous reluctance motor using asymmetric flux barrier arrangement," Conf. Rec. Industry Applications Conf. 38th IAS Annu. Meeting, Vol. 1, 250-255, October 2003. Google Scholar
19. Schmitz, N. L., Introductory Electromechanics, Ronald Press, 1965.
20. Faiz, J., H. Lesani, M. T. Nabavi-Rzavi, and I. Tabatabaei, "Modeling and simulation of a salientpole synchronous generator with dynamic eccentricity using modified winding function theory," IEEE Trans. Magn., Vol. 40, No. 3, 1550-1555, 2004.
doi:10.1109/TMAG.2004.826611 Google Scholar
21. Tessarolo, A., "Accurate computation of multiphase synchronous machine inductances based on winding function theory," IEEE Trans. Energy Convers., Vol. 27, No. 4, 895-904, 2012.
doi:10.1109/TEC.2012.2219050 Google Scholar
22. Tessarolo, A., et al. "On the analytical estimation of the airgap field in synchronous reluctance machine," 2014 Int. Conf. on Electrical Machines (ICEM), 239-244, September 2014.
doi:10.1109/ICELMACH.2014.6960187 Google Scholar
23. Mezzarobba, M., M. Degano, and A. Tessarolo, "Analytical calculation of air-gap armature reaction field including slotting effects in fractional-slot concentrated-coil SPM multiphase machines," Int. Conf. Power Engineering, Energy and Electrical Drives (POWERENG), 1-6, 2011. Google Scholar
24. Rahimian, M., T. A. Lipo, and H. Toliyat, "DQ modeling of five phase synchronous reluctance machines including third harmonic of air-gap MMF," Conf. Rec. IEEE Industry Applications Society Annu. Meeting, Vol. 1, 231-237, September 1991. Google Scholar
25. Waikar Shailesh, P., A. Lipo Thomas, and H. A. Toliyat, "Analysis and simulation of five-phase synchronous reluctance machines including third harmonic of airgap MMF," IEEE Trans. Ind. Appl., Vol. 34, No. 2, 332-339, March 1998.
doi:10.1109/28.663476 Google Scholar
26. Vas, P., Electrical Machines and Drives: A Space-vector Theory Approach, Vol. 25, Oxford University Press on Demand, 1992.
27. Villet, W. T. and M. J. Kamper, "Variable-Gear EV reluctance synchronous motor drives; An evaluation of rotor structures for position-sensorless control," IEEE Trans. Ind. Electron., Vol. 61, No. 10, 5732-5740, October 2014.
doi:10.1109/TIE.2013.2288231 Google Scholar
28. Wang, K., et al. "Optimal slot/pole and flux-barrier layer number combinations for synchronous reluctance machines," 8th Int. Conf. and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 1-8, March 2013. Google Scholar
29. Liu, T. H. and M. Y. Wei, "Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives," IEEE Trans. Ind. Electron., Vol. 60, No. 9, 3644-3657, September 2013.
doi:10.1109/TIE.2012.2206341 Google Scholar
30. Xu, L., "Rotor structure selections of nonsine five-phase synchronous reluctance machines for improved torque capability," IEEE Trans. Ind. Appl., Vol. 36, No. 4, 1111-1117, July 2000. Google Scholar
31. Henaux, C., M. Fadel, S. Desharnais, L. Calegari, and S. Yammine, "Synchronous reluctance machine flux barrier design based on the flux line patterns in a solid rotor," 2014 Int. Conf. on Electrical Machines (ICEM), 297-302, September 2014. Google Scholar
32. Hock Beng Foo, G., D. M. Vilathgamuwa, D. L. Maskell, and X. Zhang, "An improved robust fieldweakeaning algorithm for direct-torque-controlled synchronous-reluctance-motor drives," IEEE Trans. Ind. Electron., Vol. 62, No. 5, 3255-3264, 2015.
doi:10.1109/TIE.2014.2386798 Google Scholar