Vol. 66
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-16
Analysis of Polarization Interference-Type BPF Arrays for NIR Spectroscopic Imaging Utilizing All-Dielectric Planar Chiral Metamaterials
By
Progress In Electromagnetics Research M, Vol. 66, 1-10, 2018
Abstract
We investigated the potential application of planar chiral metamaterials (PCMs) to near infrared wavelength filters for multispectral measurement through electromagnetic simulation. PCM assumed here was a two-dimensional sub-wavelength surface grating on a high index film with chiral unit cells. The PCM exhibits optical activity (OA) for normally incident light at a finite wavelength range. Thus, by sandwiching the PCM with a pair of linear polarizers, a polarization interference-type BPF can be constructed. We focused on an all-dielectric PCM consisting of a silicon chiral layer and a dielectric underclad layer on a silica substrate. Wavelength filtering characteristics with different bandwidths have been verified for several underclad materials such as Si3N4, Al2O3, and Si.
Citation
Yasuo Ohtera, Jiyao Yu, and Hirohito Yamada, "Analysis of Polarization Interference-Type BPF Arrays for NIR Spectroscopic Imaging Utilizing All-Dielectric Planar Chiral Metamaterials," Progress In Electromagnetics Research M, Vol. 66, 1-10, 2018.
doi:10.2528/PIERM17112707
References

1. Osborne, B. G., T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy, 2nd Ed., Pearson Education Ltd., England, 1993.

2. Grahn, H. F., P. Geladi, and eds., Techniques and Applications of Hyperspectral Image Analysis, Wiley, England, 2007.
doi:10.1002/9780470010884

3. Herrala, E., T. Hyvarinen, O. Voutilainen, and J. Lammasniemi, "An optoelectronic sensor system for industrial multipoint and imaging spectroscopy," Sens. Actuators, Vol. A61, 335-338, 1997.
doi:10.1016/S0924-4247(97)80283-X

4. Morris, H. R., C. C. Hoyt, and P. J. Treado, "Imaging spectrometers for fluorescence and Raman microscopy: Acousto-optic and liquid crystal tunable filters," Appl. Spectroscopy, Vol. 48, No. 7, 857-866, 1994.
doi:10.1366/0003702944029820

5. Wachman, E. S., W.-H. Niu, and D. L. Farkas, "AOTF Microscope for imaging with increased speed and spectral versatility," Biophys. J., Vol. 73, 1215-1222, 1997.
doi:10.1016/S0006-3495(97)78154-2

6. Brodbeck, K. J., A. E. Profio, and T. Frewin, "A system for real time fluorescence imaging in color for tumor diagnosis," Med. Phys., Vol. 14, No. 4, 637-639, 1987.
doi:10.1118/1.596031

7. Gluck, N. S., R. B. Bailey, R. de la Rosa, and R. L. Hall, "Two-color imaging by the use of patterned optical filters bonded to focal-plane-array detectors," Appl. Opt., Vol. 35, No. 28, 5520-5523, 1996.
doi:10.1364/AO.35.005520

8. Lambrechts, A., P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, "A CMOS-compatible, integrated approach to hyper- and multispectral imaging," Proceedings of 2014 IEEE International Electron Devices Meeting (IEDM), IEDM14-261–264, 2014.

9. Chen, Q. and D. R. S. Cumming, "High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films," Opt. Express, Vol. 18, No. 13, 14056-14062, 2010.
doi:10.1364/OE.18.014056

10. Cunningham, B. T., "Photonic crystal surfaces as a general purpose platform for label-free and fluorescent assays," J. Assoc. Lab. Automation, Vol. 15, 120-135, 2010.
doi:10.1016/j.jala.2009.10.009

11. Ohtera, Y., D. Kurniatan, and H. Yamada, "Design and fabrication of multi-channel Si/SiO2 autocloned photonic crystal edge filters," Appl. Opt., Vol. 50, No. 9, C50-C54, 2011.
doi:10.1364/AO.50.000C50

12. Mitsuhashi, M., Y. Ohetra, and H. Yamada, "Near-infrared imaging of liquid mixtures utilizing multi-channel photonic crystal wavelength filters," Opt. Lett., Vol. 39, No. 18, 5301-5304, 2013.
doi:10.1364/OL.39.005301

13. Yariv, A. and P. Yeh, Optical Waves in Crystals, Sec. 5, Wiley, New York, 1984.

14. Papakostas, A., A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett., Vol. 90, No. 10, 107404-1-107404-4, 2003.
doi:10.1103/PhysRevLett.90.107404

15. Bai, B., Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: Theoretical study," Phys. Rev. A, Vol. 76, No. 2, 023811-1-023811-12, 2007.

16. Gorkunov, M. V., A. A. Ezhov, V. V. Artemov, O. Y. Rogov, and S. G. Yudin, "Extreme optical activity and circular dichroism of chiral metal hole arrays," Appl. Phys. Lett., Vol. 104, No. 22, 221102-1-221102-4, 2014.
doi:10.1063/1.4880798

17. Decker, M., M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, "Strong optical activity from twisted-cross photonic metamaterials," Opt. Lett., Vol. 34, No. 16, 2501-2503, 2009.
doi:10.1364/OL.34.002501

18. Kenanakis, G., R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, "Flexible chiral metamaterials in the terahertz regime: A comparative study of various designs," Opt. Mat. Express, Vol. 2, No. 12, 1702-1712, 2012.
doi:10.1364/OME.2.001702

19. Konishi, K., B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. K. Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express, Vol. 16, No. 10, 7189-7196, 2008.
doi:10.1364/OE.16.007189

20. Ohtera, Y., "Numerical analysis of artificial optical activities of planar chiral nano-gratings," IEICE Trans. Electron., Vol. E97-C, No. 1, 33-39, 2014.
doi:10.1587/transele.E97.C.33

21. Wang, S. S. and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt., Vol. 32, No. 14, 2606-2613, 1993.
doi:10.1364/AO.32.002606

22. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Boston, 2005.

23. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, 1981.
doi:10.1109/TEMC.1981.303970

24. Rosenblatt, D., A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron., Vol. 33, No. 11, 2038-2059, 1997.
doi:10.1109/3.641320

25. Themelis, G., J. S. Yoo, and V. Ntziachristos, "Multispectral imaging using multiple-bandpass filters," Opt. Lett., Vol. 33, No. 9, 1023-1025, 2008.
doi:10.1364/OL.33.001023