1. Osborne, B. G., T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy, 2nd Ed., Pearson Education Ltd., 1993.
2. Grahn, H. F., P. Geladi, and eds., Techniques and Applications of Hyperspectral Image Analysis, Wiley, 2007.
doi:10.1002/9780470010884
3. Herrala, E., T. Hyvarinen, O. Voutilainen, and J. Lammasniemi, "An optoelectronic sensor system for industrial multipoint and imaging spectroscopy," Sens. Actuators, Vol. A61, 335-338, 1997.
doi:10.1016/S0924-4247(97)80283-X Google Scholar
4. Morris, H. R., C. C. Hoyt, and P. J. Treado, "Imaging spectrometers for fluorescence and Raman microscopy: Acousto-optic and liquid crystal tunable filters," Appl. Spectroscopy, Vol. 48, No. 7, 857-866, 1994.
doi:10.1366/0003702944029820 Google Scholar
5. Wachman, E. S., W.-H. Niu, and D. L. Farkas, "AOTF Microscope for imaging with increased speed and spectral versatility," Biophys. J., Vol. 73, 1215-1222, 1997.
doi:10.1016/S0006-3495(97)78154-2 Google Scholar
6. Brodbeck, K. J., A. E. Profio, and T. Frewin, "A system for real time fluorescence imaging in color for tumor diagnosis," Med. Phys., Vol. 14, No. 4, 637-639, 1987.
doi:10.1118/1.596031 Google Scholar
7. Gluck, N. S., R. B. Bailey, R. de la Rosa, and R. L. Hall, "Two-color imaging by the use of patterned optical filters bonded to focal-plane-array detectors," Appl. Opt., Vol. 35, No. 28, 5520-5523, 1996.
doi:10.1364/AO.35.005520 Google Scholar
8. Lambrechts, A., P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, "A CMOS-compatible, integrated approach to hyper- and multispectral imaging," Proceedings of 2014 IEEE International Electron Devices Meeting (IEDM), IEDM14-261–264, 2014. Google Scholar
9. Chen, Q. and D. R. S. Cumming, "High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films," Opt. Express, Vol. 18, No. 13, 14056-14062, 2010.
doi:10.1364/OE.18.014056 Google Scholar
10. Cunningham, B. T., "Photonic crystal surfaces as a general purpose platform for label-free and fluorescent assays," J. Assoc. Lab. Automation, Vol. 15, 120-135, 2010.
doi:10.1016/j.jala.2009.10.009 Google Scholar
11. Ohtera, Y., D. Kurniatan, and H. Yamada, "Design and fabrication of multi-channel Si/SiO2 autocloned photonic crystal edge filters," Appl. Opt., Vol. 50, No. 9, C50-C54, 2011.
doi:10.1364/AO.50.000C50 Google Scholar
12. Mitsuhashi, M., Y. Ohetra, and H. Yamada, "Near-infrared imaging of liquid mixtures utilizing multi-channel photonic crystal wavelength filters," Opt. Lett., Vol. 39, No. 18, 5301-5304, 2013.
doi:10.1364/OL.39.005301 Google Scholar
13. Yariv, A. and P. Yeh, Optical Waves in Crystals, Sec. 5, Wiley, 1984.
14. Papakostas, A., A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett., Vol. 90, No. 10, 107404-1-107404-4, 2003.
doi:10.1103/PhysRevLett.90.107404 Google Scholar
15. Bai, B., Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: Theoretical study," Phys. Rev. A, Vol. 76, No. 2, 023811-1-023811-12, 2007. Google Scholar
16. Gorkunov, M. V., A. A. Ezhov, V. V. Artemov, O. Y. Rogov, and S. G. Yudin, "Extreme optical activity and circular dichroism of chiral metal hole arrays," Appl. Phys. Lett., Vol. 104, No. 22, 221102-1-221102-4, 2014.
doi:10.1063/1.4880798 Google Scholar
17. Decker, M., M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, "Strong optical activity from twisted-cross photonic metamaterials," Opt. Lett., Vol. 34, No. 16, 2501-2503, 2009.
doi:10.1364/OL.34.002501 Google Scholar
18. Kenanakis, G., R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, "Flexible chiral metamaterials in the terahertz regime: A comparative study of various designs," Opt. Mat. Express, Vol. 2, No. 12, 1702-1712, 2012.
doi:10.1364/OME.2.001702 Google Scholar
19. Konishi, K., B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. K. Gonokami, "Observation of extraordinary optical activity in planar chiral photonic crystals," Opt. Express, Vol. 16, No. 10, 7189-7196, 2008.
doi:10.1364/OE.16.007189 Google Scholar
20. Ohtera, Y., "Numerical analysis of artificial optical activities of planar chiral nano-gratings," IEICE Trans. Electron., Vol. E97-C, No. 1, 33-39, 2014.
doi:10.1587/transele.E97.C.33 Google Scholar
21. Wang, S. S. and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt., Vol. 32, No. 14, 2606-2613, 1993.
doi:10.1364/AO.32.002606 Google Scholar
22. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.
23. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, 1981.
doi:10.1109/TEMC.1981.303970 Google Scholar
24. Rosenblatt, D., A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron., Vol. 33, No. 11, 2038-2059, 1997.
doi:10.1109/3.641320 Google Scholar
25. Themelis, G., J. S. Yoo, and V. Ntziachristos, "Multispectral imaging using multiple-bandpass filters," Opt. Lett., Vol. 33, No. 9, 1023-1025, 2008.
doi:10.1364/OL.33.001023 Google Scholar