1. Wu, Y. and H. C. So, "Simple and accurate two-dimensional angle estimation for a single source with uniform circular array," IEEE Antennas Wireless Propag. Lett., Vol. 7, 78-80, 2008.
doi:10.1109/LAWP.2008.920908 Google Scholar
2. Wu, Y. W., S. Rhodes, and E. H. Satorius, "Direction of arrival estimation via extended phase interferometry," IEEE Trans. Aerosp. Electron. Syst., Vol. 31, No. 1, 375-381, 1995.
doi:10.1109/7.366333 Google Scholar
3. Seidman, L. P., "Bearing estimation error with a linear array," IEEE Trans. Audio & Electroacoust., Vol. 19, No. 2, 147-157, 1971.
doi:10.1109/TAU.1971.1162169 Google Scholar
4. Jackson, B. R., S. Rajan, and B. J. Liao, "Direction of arrival estimation using directive antennas in uniform circular arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 736-747, 2015.
doi:10.1109/TAP.2014.2384044 Google Scholar
5. Pace, P. E., D. Wickersham, D. C. Jenn, and N. S. York, "High-resolution phase sampled interferometry using symmetrical number systems," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1411-1423, 2001.
doi:10.1109/8.954930 Google Scholar
6. Lee, J. H. and J. M. Woo, "Interferometer direction-finding system with improved DF accuracy using two different array configurations," IEEE Antennas Wireless Propag. Lett., Vol. 14, 719-722, 2015.
doi:10.1109/LAWP.2014.2377291 Google Scholar
7. Liu, Z. M., Z. T. Huang, and Y. Y. Zhou, "Computationally efficient direction finding using uniform linear arrays," IET Radar, Sonar, Navigation, Vol. 6, No. 1, 39-48, 2012.
doi:10.1049/iet-rsn.2010.0254 Google Scholar
8. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.
doi:10.2528/PIER10071701 Google Scholar
9. Liao, B., Y. T. Wu, and S. C. Chan, "A generalized algorithm for fast two-dimensional angle estimation of a single source with uniform circular arrays," IEEE Antennas Wireless Propag. Lett., Vol. 11, No. 2, 984-986, 2012.
doi:10.1109/LAWP.2012.2213792 Google Scholar
10. Ioannides, P. and C. A. Balanis, "Uniform circular arrays for smart antennas," IEEE Antennas Propag. Magazine, Vol. 47, No. 4, 192-206, 2005.
doi:10.1109/MAP.2005.1589932 Google Scholar
11. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular array," IEEE Trans. Signal Process., Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861 Google Scholar
12. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904 Google Scholar
13. Si, W., L. Wan, L. Liu, and Z. Tian, "Fast estimation of frequency and 2-D DOAs for cylindrical conformal array antenna using state-space and propagator method," Progress In Electromagnetics Research, Vol. 137, 51-71, 2013.
doi:10.2528/PIER12121114 Google Scholar
14. Belloni, F. and V. Koivunen, "Beamspace transform for UCA: Error analysis and bias reduction," IEEE Trans. Signal Process., Vol. 54, No. 8, 3078-3089, 2006.
doi:10.1109/TSP.2006.877664 Google Scholar
15. Huang, Q., L. Zhang, and Y. Fang, "Two-stage decoupled DOA estimation based on real spherical harmonics for spherical arrays," IEEE/ACM Trans. Audio Speech Lang. Process., Vol. 25, No. 11, 2045-2058, 2017.
doi:10.1109/TASLP.2017.2737235 Google Scholar
16. Teutsch, H., Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition (Lecture Notes in Control and Information Sciences), Springer, 2007.
17. De Witte, E., H. Griffith, and P. Brennan, "Phase mode processing for spherical arrays," Electron. Lett., Vol. 39, No. 20, 1430-1431, 2003.
doi:10.1049/el:20030922 Google Scholar
18. Meyer, J. and G. Elko, "A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Vol. 2, 1781-1784, May 2002. Google Scholar
19. Rafaely, B., "Analysis and design of spherical microphone arrays," IEEE Trans. Speech Audio Process., Vol. 13, 135-143, 2005.
doi:10.1109/TSA.2004.839244 Google Scholar
20. Rafaely, B., "The spherical-shell microphone array," IEEE Trans. Audio, Speech, Lang. Process., Vol. 16, No. 4, 740-747, 2008.
doi:10.1109/TASL.2008.920059 Google Scholar
21. Rafaely, B., Fundamentals of Spherical Array Processing, (Springer Topics in Signal Processing), Springer-Verlag, 2015.
doi:10.1007/978-3-662-45664-4
22. Rafaely, B., "Plane-wave decomposition of the pressure on a sphere by spherical convolution," J. Acoust. Soc. Amer., Vol. 116, 2149-2157, 2004.
doi:10.1121/1.1792643 Google Scholar
23. Moore, A., C. Evers, and P. Naylor, "Direction of arrival estimation in the spherical harmonic domain using subspace pseudo-intensity vectors," IEEE/ACM Trans. Audio Speech Lang. Process., Vol. 25, No. 1, 178-192, 2017.
doi:10.1109/TASLP.2016.2613280 Google Scholar
24. Costa, M., A. Richter, and V. Koivunen, "Unified array manifold decomposition based on spherical harmonics and 2-D Fourier basis," IEEE Trans. Signal Process., Vol. 58, No. 9, 4634-4645, 2010.
doi:10.1109/TSP.2010.2050315 Google Scholar
25. Goossens, R. and H. Rogier, "Unitary spherical ESPRIT: 2-D angle estimation with spherical arrays for scalar fields," IET Signal Process., Vol. 3, No. 3, 221-231, 2008.
doi:10.1049/iet-spr.2008.0101 Google Scholar
26. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 841-849, 2007.
doi:10.1109/TAP.2007.891848 Google Scholar
27. Wang, B. H., H. T. Hui, and M. S. Leong, "Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 747-755, 2010.
doi:10.1109/TAP.2009.2039323 Google Scholar
28. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 2001.
doi:10.1109/9780470546710
29. Driscoll, J. R., D. M. Healy, and Jr., "Computing Fourier transforms and convolutions on the 2-sphere," Adv. Appl. Math., Vol. 15, No. 2, 202-250, 1994.
doi:10.1006/aama.1994.1008 Google Scholar
30. Williams, E. G., Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, 1st Ed., Academic, 1999.
31. Kay, S. M., "A fast and accurate single frequency estimator," IEEE Trans. Acoustics, Speech, Signal Process., Vol. 37, No. 12, 1987-1990, 1989.
doi:10.1109/29.45547 Google Scholar
32. Tretter, S. A., "Estimating the frequency of a noisy sinusoid by linear regression," IEEE Trans. Inf. Theory, Vol. 31, No. 6, 832-835, 1985.
doi:10.1109/TIT.1985.1057115 Google Scholar
33. Rife, D. and R. Boorstyn, "Single tone parameter estimation from discrete-time observations," IEEE Trans. Inf. Theory, Vol. 20, No. 5, 591-598, 1974.
doi:10.1109/TIT.1974.1055282 Google Scholar
34. Mcaulay, R., "Interferometer design for elevation angle estimation," IEEE Trans. Aerosp. Electron. Syst., Vol. 13, No. 5, 486-503, 1977.
doi:10.1109/TAES.1977.308414 Google Scholar
35. Kay, Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, PTR Prentice Hall, 1993.
36. Robert, J. M., II, Handbook of Fourier Analysis and Its Applications, Oxford University Press, 2009.