Vol. 68
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-16
P-OMP-IR Algorithm for Hybrid Precoding in Millimeter Wave MIMO Systems
By
Progress In Electromagnetics Research M, Vol. 68, 163-171, 2018
Abstract
This paper presents a P-OMP-IR algorithm for the hybrid precoding problem in millimeter wave (mm-Wave) multiple-input multiple-output (MIMO) systems. In the proposed approach, the digital precoding matrix is updated via the orthogonal matching pursuit (OMP) method, and the analog precoding matrix is refined column by column using the dominant singular value and corresponding singular vectors of a residual matrix successively. During the refining phase of the analog precoding matrix, an extended power method is designed to calculate the dominant singular value and the corresponding left and right singular vectors, which is able to reduce the computational complexity significantly. Simulation results show that the proposed algorithm can not only reduce the residual of the hybrid precoder effectively, but also improve the spectral efficiency consistently.
Citation
Ruiyan Du, Fulai Liu, Xinwei Wang, Qingping Zhou, and Xiaoyu Bai, "P-OMP-IR Algorithm for Hybrid Precoding in Millimeter Wave MIMO Systems," Progress In Electromagnetics Research M, Vol. 68, 163-171, 2018.
doi:10.2528/PIERM18041003
References

1. Kutty, S. and D. Sen, "Beamforming for millimeter wave communications: An inclusive survey," IEEE Commun. Surveys Tuts., Vol. 18, No. 2, 949-973, 2016.
doi:10.1109/COMST.2015.2504600

2. Heath, R. W., N. Gonzalez-Prelcic, Jr., S. Rangan, W. Roh, and A. M. Sayeed, "An overview of signal processing techniques for millimeter wave MIMO systems," IEEE J. Sel. Topics Signal Process., Vol. 10, No. 3, 436-452, 2016.
doi:10.1109/JSTSP.2016.2523924

3. Han, S., I. Chih-Lin, Z. Xu, and C. Rowell, "Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G," IEEE Commun. Mag., Vol. 53, No. 1, 186-194, 2015.
doi:10.1109/MCOM.2015.7010533

4. Kanatas, A. G., "A receive antenna subarray formation algorithm for MIMO systems," IEEE Commun. Lett., Vol. 11, No. 5, 1396-1398, 2007.
doi:10.1109/LCOMM.2007.062121

5. Venkateswaran, V. and A. J. Veen, "Analog beamforming in MIMO communications with phase shift networks and online channel estimation," IEEE Trans. Signal Process., Vol. 58, No. 8, 4131-4133, 2010.
doi:10.1109/TSP.2010.2048321

6. Nsenga, J., A. Bourdoux, W. V. Thillo, V. Ramon, and F. Horlin, "Joint Tx/Rx analog linear transformation for maximizing the capacity at 60 GHz," IEEE Int. Conf. Commun., 1-5, 2011.

7. Ni, W., X. Dong, and W. S. Lu, "Near-optimal hybrid processing for massive MIMO systems via matrix decomposition," IEEE Trans. Signal Process., Vol. 65, No. 15, 3922-3933, 2017.
doi:10.1109/TSP.2017.2699643

8. Singh, J. and S. Ramakrishna, "On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays," IEEE Trans. Wireless Commun., Vol. 14, No. 5, 2670-2683, 2015.
doi:10.1109/TWC.2015.2390637

9. Dai, L., X. Gao, J. Quan, S. Han, and I. Chih-Lin, "Near-optimal hybrid analog and digital precoding for downlink mmWave massive MIMO systems," Proc. IEEE Int. Conf. Commun., 1334-1339, 2015.

10. Raghavan, V., S. Subramanian, J. Cezanne, and A. Sampath, "Directional beamforming for millimeter-wave MIMO systems," IEEE Global Commun. Conf., 1-7, 2015.

11. Alkhateeb, A., O. E. Ayach, G. Leus, and R. W. Heath, "Hybrid precoding for millimeter wave cellular systems with partial channel knowledge," Inf. Theory Appl. Workshop, 1-5, 2013.

12. Ayach, O. E., S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially sparse precoding in millimeter wave MIMO systems," IEEE Trans. Wireless Commun., Vol. 13, No. 3, 1499-1513, 2014.
doi:10.1109/TWC.2014.011714.130846

13. Rusu, C., R. Mendez-Rial, N. Gonzalez-Prelcic, and R. W. Heath, "Low complexity hybrid precoding strategies for millimeter wave communication systems," IEEE Trans. Wireless Commun., Vol. 15, No. 12, 8380-8393, 2016.
doi:10.1109/TWC.2016.2614495

14. Balanis, C., Antenna Theory, Wiley, 1997.

15. Alkhateeb, A., O. E. Ayach, G. Leus, and R. W. Heath, "Hybrid precoding for millimeter wave cellular systems with partial channel knowledge," IEEE Inf. Theory Appl. Workshop, 1-5, 2013.

16. Yu, X., J. C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," IEEE J. Sel. Topics Signal Process., Vol. 10, No. 3, 485-500, 2016.
doi:10.1109/JSTSP.2016.2523903

17. Wei, D., T. Xu, and W. Wang, "Simultaneous codeword optimization (SimCO) for dictionary update and learning," IEEE Trans. Signal Process., Vol. 60, No. 12, 6340-6353, 2011.
doi:10.1109/TSP.2012.2215026

18. Aharon, M., M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Process., Vol. 54, No. 11, 4311-4322, 2006.
doi:10.1109/TSP.2006.881199

19. Wei, M., "Perturbation theory for the Eckart-Young-Mirsky theorem and the constrained total least squares problem," Linear Algebra Appl., Vol. 280, No. 2, 267-287, 1998.
doi:10.1016/S0024-3795(98)10018-6

20. Alkhateeb, A. and R. W. Heath, "Frequency selective hybrid precoding for limited feedback millimeter wave systems," IEEE Trans. Commun., Vol. 64, No. 5, 1801-1818, 2016.
doi:10.1109/TCOMM.2016.2549517

21. Liu, F. L., R. Y. Du, J. P. Guo, and S. M. Guo, "P-GLRT algorithm for cooperative spectrum sensing," Wireless Personal Commun., Vol. 81, No. 3, 1079-1089, 2015.
doi:10.1007/s11277-014-2172-6

22. Mirza, J., B. Ali, S. S. Naqvi, and S. Saleem, "Hybrid precoding via successive refinement for millimeter wave MIMO communication systems," IEEE Commun. Lett., Vol. 21, No. 5, 991-994, 2017.
doi:10.1109/LCOMM.2017.2655514