Vol. 70
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-25
A Novel Design of Compact Monopole Antenna with Defected Ground Plane for Wideband Applications
By
Progress In Electromagnetics Research M, Vol. 70, 21-31, 2018
Abstract
In this paper, a design of compact monopole antenna with defected ground plane for wideband applications has been investigated. Initially, the partial ground plane is used which yield the impedance bandwidth (S11 ≤ -10 dB) of 23.87% and 17.54% ranging (4.00 GHz-5.11 GHz) and (8.48 GHz-9.84 GHz) respectively. The bandwidth of the proposed monopole antenna is enhanced by employing the defects in the partial ground plane. Antenna is designed and simulated by using Ansoft HFSS v13 simulator; moreover, the antenna is fabricated to validate the simulated results with the measured results. Measured proposed monopole antenna with DGP (Defected Ground Plane) exhibits the impedance bandwidth (S11 ≤ -10 dB) of 72.87% ranging (3.89 GHz-8.35 GHz), which covers different wireless standards such as WiMAX (3.3 GHz-3.7 GHz), WLAN (5.15 GHz-5.85 GHz), X-band satellite applications (7.1 GHz-7.76 GHz) and point to point high speed wireless communication (5.925 GHz-8.5 GHz).
Citation
Sumeet Singh Bhatia Aditi Sahni Shashi B. Rana , "A Novel Design of Compact Monopole Antenna with Defected Ground Plane for Wideband Applications," Progress In Electromagnetics Research M, Vol. 70, 21-31, 2018.
doi:10.2528/PIERM18050201
http://www.jpier.org/PIERM/pier.php?paper=18050201
References

1. Rabike, S. V., S. D. Sahu, and S. V. Khobragade, "Fractal antenna for multi-frequency applications using PIN diode," Journal of Computational Electronics, 2014, doi: 10.007/s10825-014-0640-6.

2. Mishrs, A., J. A. Ansari, K. Kamakshi, A. Singh, M. Aneesh, and B. R. Vishvakarma, "Compact dual band rectangular microstrip patch antenna for 2.4/5.12 GHz wireless applications," Journal of Mobile Communication, Computation and Information, 2014, doi: 10.1007/s11276-014-0783-1.

3. Bargavi, K., K. Sankar, and S. A. Samson, "Compact triple band H-shaped slotted circular patch antenna," IEEE Conference on Communication and Signal Processing, 1159-1162, 2014.

4. Reddy, V. V. and N. V. S. N. Sarma, "Tri-band circularly polarized Koch fractal boundary microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1057-1060, 2014.
doi:10.1109/LAWP.2014.2327566

5. Thakare, Y. B. and Rajkumar, "Design of fractal antenna for size and radar cross-section reduction," IET Microwave, Antennas and Propagation, Vol. 4, No. 1, 175-181, 2010, doi: 10.1049/iet-map.2008.0325.
doi:10.1049/iet-map.2008.0325

6. Thakare, Y. B., P. S. Wankhade, P. N. Vasanbekar, S. N. Talbar, and M. D. Uplane, "Super wideband fractal antenna for wireless communication," IEEE Conference on Wireless Information Technology and Systems: ICWITS, 2012, doi: 10.1109/ICWITS.2012.6417706.

7. Bakariya, P. S., S. Dawari, and M. Sarkar, "Triple band notch UWB printed monopole antenna with enhanced bandwidth," International Journal of Electronics and Communications (AEU), Vol. 69, 26-30, 2015.
doi:10.1016/j.aeue.2014.07.023

8. Chen, K. R., C. Y. D. Sim, and J. S. Row, "A compact monopole antenna for super wideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 488-491, 2011, doi: 10.1149/LAWP.2011.2157071.
doi:10.1109/LAWP.2011.2157071

9. Bhatia, S. S. and J. S. Sivia, "A novel design of circular monopole antenna for wireless applications," Wireless Pers. Comm., Vol. 91, 1153-1161, 2016, doi: 10.1007/s11277-016-3518-z.
doi:10.1007/s11277-016-3518-z

10. Lee, S. H. and Y. Sung, "Multiband antenna for wireless UWB dongle applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 25-28, 2011, doi: 10.1109/LAWP.2011.2107874.

11. Bharti, G., S. Bhatia, and J. S. Sivia, "Analysis and design of triple band compact microstrip patch antenna with fractal elements for wireless applications," International Conference on Computational Modeling and Security: CMS, Vol. 85, 380-385, Elsevier, 2016, doi: 10.1016/j.procs.2016.05.246.

12. Srivastava, D. K., A. Khanna, and J. P. Saini, "Design of a wideband gap coupled modified square fractal antenna," Journal of Computational Electronics, 2015, doi: 10.1007/s10825-015-0740-y.

13. Choukiker, Y. K. and S. K. Behra, "Design of wideband fractal antenna with combination of fractal geometries," IEEE Conference on Information, Communication and Signal Processing: ICICS, 2011, doi: 10.1100/ICICS.2011.6174226.

14. Wu, C. M., "Wideband dual-frequency CPW-fed triangular monopole antenna for DCS/WLAN applications," International Journal of Electronics and Communications (AEU), Vol. 61, 563-567, 2006.

15. Shanuganantham, T., K. Balamanikadan, and S. Raghavan, "CPW fed slot antenna for wideband applications," International Journal of Antennas and Propagation (Hindawi), 1-4, 2008, doi: 10.1155/2008/379247.

16. Ray, K. P., S. S. Thakur, and R. A. Deshmukh, "Wideband L-shaped printed monopole antenna," International Journal of Electronics and Communications (AEU), Vol. 66, 693-696, 2012.
doi:10.1016/j.aeue.2011.12.012

17. Chitra, R. J. and V. Nagarajan, "Double L-slot microstrip patch antenna array for WiMAX and WLAN applications," International Journal of Computers and Electrical Engineering, Vol. 39, 1026-1041, 2013.
doi:10.1016/j.compeleceng.2012.11.024

18. Suma, M. N., P. V. Bijuman, M. T. Sebastian, and P. Mohanan, "A compact hybrid CPW-fed planar monopole dielectric resonator antenna," Journal of the European Ceramic Society, Vol. 27, 3001-3004, Elsevier, 2007.

19. Chen, L., X. Ren, Y.-Z. Zin, and Z. Wang, "Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader," Progress In Electromagnetics Research Letters, Vol. 41, 77-86, 2013.
doi:10.2528/PIERL13052020

20. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., London, Wiley, 1997.

21. Omar, S. A., A. Iqbal, O. A. Saraereh, and A. Basir, "An array of M-shaped Vivaldi antennas for UWB applications," Progress In Electromagnetics Research Letters, Vol. 68, 67-72, 2017.

22. Iqbal, A., O. A. Saraereh, and S. K. Jaiswal, "Maple leaf shaped UWB monopole antenna with dual band notch functionality," Progress In Electromagnetics Research C, Vol. 71, 169-175, 2017.
doi:10.2528/PIERC17010801

23. Lee, C. H., P. S. Ho, C. I. G. Hsu, and H. H. Chen, "Design of balanced band notched UWB filtering high gain slot antenna," Microw. Opt. Technol. Lett., Vol. 60, 615-620, 2018.
doi:10.1002/mop.31017