1. Chabinski, I. J., "Applications of microwave energy. Past, present and future. Brave new worlds," Proceedings of the Materials Research Society Symposium, Vol. 124, 17-32, 1990.
doi:10.1557/PROC-124-17 Google Scholar
2. Baker-Jarvis, J., M. D Janezic, B. F Riddle, C. L. Holloway, N.-G. Painter, and J.-E. Bendell, "Dielectric and conductor loss characterization and measurements on electronic packaging materials," NIST Technical Note, Vol. 1520, July 2001. Google Scholar
3. Bruce, R. W., "New frontiers in the use of microwave energy: Power and metrology," Microwave Processing of Materials, Proceeding of Materials Research Society Symposium, Vol. 124, 3-15, 1990.
doi:10.1557/PROC-124-3 Google Scholar
4. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Vardan, and V. K. Vardan, Microwave Electronics, Measurement and Materials Characterisation, John Wiley & Sons, Ltd., 2004.
doi:10.1002/0470020466
5. Dench, E. C., "Advantages of microwave processing," Proceeding of the IMPS Symposium, 1-5, Canada, 1973. Google Scholar
6. Komarov, V., S, Wang, and J. Tang, Permittivity and Measurement, Encyclopedia of RF and Microwave Engendering, John Wiley & Sons, Ltd., 2004.
7. Bernardi, P., R. Cicchetti, S. Pisa, E. Pittella, E. Piuzzi, and O. Testa, "Design, realization and test of a UWB radar sensor for breath activity monitoring," IEEE Sensors Journal, Vol. 14, No. 2, 584-596, February 2014.
doi:10.1109/JSEN.2013.2285915 Google Scholar
8. Lee, D., J. Velander, D. Nowinski, and R. Augustine, "A preliminary research on skull healing utilizing short pulsed radar technique on layered cranial surgery phantom models," Progress In Electromagnetics Research C, Vol. 84, 1-9, 2018.
doi:10.2528/PIERC18022604 Google Scholar
9. Mohanna, M. M., E. A. Abdallah, H. M. S. El-Hennawy, and M. A. Attia, "Design and analysis of a novel low loss ultra-wideband coplanar waveguide (CPW) to coplanar strips (CPS) transition for tapered slot antennas (TSA) in ground penetrating radar (GPR) application," Progress In Electromagnetics Research C, Vol. 83, 179-194, 2018.
doi:10.2528/PIERC18032001 Google Scholar
10. Xu, X., T. Xia, V. Anbu, and H. Driver, "The development of a high-speed ultra-wide-band ground penetrating radar for rebar detection," ASCE’s Journal of Engineering Mechanics, Vol. 139, 272-285, 2013.
doi:10.1061/(ASCE)EM.1943-7889.0000458 Google Scholar
11. Lu, S., G. Cui, X. Yu, L. Kong, and X. Yang, "Cognitive radar waveform design against signal-dependent modulated jamming," Progress In Electromagnetics Research B, Vol. 80, 59-77, 2018.
doi:10.2528/PIERB18010805 Google Scholar
12. Lee, J. S., C. Nguyen, and T. Scullion, "New uniplanar subnanosecond monocycle pulse generator and transformer for time-domain microwave application," IEEE Trans. Microwave Theory Tech., Vol. 49, 1126-1129, 2001. Google Scholar
13. Ma, T.-G., C.-J. Wu, P. K. Cheng, and C.-F. Chou, "Ultrawideband monocycle pulse generator with dual resistive loaded shunt stubs," IEEE Microw. Opt. Technol., 459-462, 2007.
doi:10.1002/mop.22145 Google Scholar
14. Ruengwaree, A., A. Ghose, J. Weide, and G. Kompa, "Ultra-fast pulse transmitter for UWB microwave radar," 36th European Microwave Conference, 1833-1836, 2006. Google Scholar
15. Guo, Y., G. Zhu, and Z. Zhou, "A novel design and implementation of sub-nanosecond sampling pulse generator for ultra-wideband equivalent sampling receiver," Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 1-5, 2014. Google Scholar
16. Pongsoon, P., K. Bunnjaweht, and D. Kaemarungsi, "Edge-triggered driver circuit for ultra-wideband pulse generator with cascade impulse shaping," 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECT, 1-4, 2012. Google Scholar
17. Protiva, P., J. Mrkvica, and J. Machac, "High power monocycle pulse generator for through-the-wall radar transmitter," Proc. IEEE Asia-Pacific Conf. Circuits Syst., 2324-2327, 2009. Google Scholar
18. Li, Z., X. X. Lv, Y. F. Long, and T. Qin, "An ultra-wideband monocycle pulse generator with good performance," Proc. Int. Conf. Computat. Problem-Solving (ICCP), 253-254, 2011.
doi:10.1109/ICCPS.2011.6092226 Google Scholar
19. Zhu, J., Y. Sun, and H. Fang, "Enhanced characteristic basis function method for solving the monostatic radar cross section of conducting targets," Progress In Electromagnetics Research M, Vol. 68, 173-180, 2018.
doi:10.2528/PIERM18022703 Google Scholar
20. Younes, A., J. M. Catala-Rivera, F. P. Foix, and A. Driouach, "Simple, compact and low-cost pulse transmitter for UWB microwave radar," Mediterranean Conference on Information & Technologies, 2015. Google Scholar
21. Amdaouch, I., O. Aghzout, A. Naghar, A. V. Alejos, and F. J. Falcone, "Breast tumor detection system based on a compact UWB antenna design," Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018. Google Scholar
22. Borja, B., J. A. Tirado-Mendez, and H. Jardon-Aguilar, "An overview of UWB antennas for microwave imaging systems for cancer detection purposes," Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018.
doi:10.2528/PIERB18030302 Google Scholar
23. Baharuddin, M., V. Wissan, J. T. Sri Sumantyo, and H. Kuze, "Equilateral triangular microstrip antenna for circularly-polarized synthetic aperture radar," Progress In Electromagnetics Research C, Vol. 8, 107-120, 2009.
doi:10.2528/PIERC09052202 Google Scholar
24. Takemura, N. and S. Ichikawa, "Broadbanding of printed bell-shaped monopole antenna by using short stub for UWB applications," Progress In Electromagnetics Research C, Vol. 78, 57-67, 2017.
doi:10.2528/PIERC17060702 Google Scholar