Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-12
An Advanced Electrical Properties Measurement Approach with a Designed BI-Static Ultra-Wideband Impulse Radar Sensor
By
Progress In Electromagnetics Research M, Vol. 75, 167-178, 2018
Abstract
This paper reports on the development of a compact, low-cost, impulse bi-static UWB radar sensor for its use as non-destructive methods for electrical property measurement in industrial application. This UWB Radar sensor consists of an ultrashort-monocycle-pulse transmitter of 330 ps, an oscilloscope as a UWB sampling receiver with a high wide band of 6 GHz, and two UWB antennas ranging from 0.4 to 6 GHz. A new model of SRD has been introduced in order to decrease the rise time of the impulse. Performance of this UWB radar sensor was veri ed through two kinds of applications: range detection and electrical property measurements. All measurements have been carried out in an anechoic chamber with a distance variation between 80 and 300 cm. The full radar system provides good agreement between the experimental and theoretical results, which demonstrate its application in many fields, especially for electrical Property Measurements.
Citation
Younes Ahajjam, Otman Aghzout, Jose Manuel Cataia-Civera, Felipe Penaranda-Foix, and Abdellah Driouach, "An Advanced Electrical Properties Measurement Approach with a Designed BI-Static Ultra-Wideband Impulse Radar Sensor," Progress In Electromagnetics Research M, Vol. 75, 167-178, 2018.
doi:10.2528/PIERM18070305
References

1. Chabinski, I. J., "Applications of microwave energy. Past, present and future. Brave new worlds," Proceedings of the Materials Research Society Symposium, Vol. 124, 17-32, 1990.
doi:10.1557/PROC-124-17

2. Baker-Jarvis, J., M. D Janezic, B. F Riddle, C. L. Holloway, N.-G. Painter, and J.-E. Bendell, "Dielectric and conductor loss characterization and measurements on electronic packaging materials," NIST Technical Note, Vol. 1520, July 2001.

3. Bruce, R. W., "New frontiers in the use of microwave energy: Power and metrology," Microwave Processing of Materials, Proceeding of Materials Research Society Symposium, Vol. 124, 3-15, 1990.
doi:10.1557/PROC-124-3

4. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Vardan, and V. K. Vardan, Microwave Electronics, Measurement and Materials Characterisation, John Wiley & Sons, Ltd., 2004.
doi:10.1002/0470020466

5. Dench, E. C., "Advantages of microwave processing," Proceeding of the IMPS Symposium, 1-5, Canada, 1973.

6. Komarov, V., S, Wang, and J. Tang, Permittivity and Measurement, Encyclopedia of RF and Microwave Engendering, John Wiley & Sons, Ltd., 2004.

7. Bernardi, P., R. Cicchetti, S. Pisa, E. Pittella, E. Piuzzi, and O. Testa, "Design, realization and test of a UWB radar sensor for breath activity monitoring," IEEE Sensors Journal, Vol. 14, No. 2, 584-596, February 2014.
doi:10.1109/JSEN.2013.2285915

8. Lee, D., J. Velander, D. Nowinski, and R. Augustine, "A preliminary research on skull healing utilizing short pulsed radar technique on layered cranial surgery phantom models," Progress In Electromagnetics Research C, Vol. 84, 1-9, 2018.
doi:10.2528/PIERC18022604

9. Mohanna, M. M., E. A. Abdallah, H. M. S. El-Hennawy, and M. A. Attia, "Design and analysis of a novel low loss ultra-wideband coplanar waveguide (CPW) to coplanar strips (CPS) transition for tapered slot antennas (TSA) in ground penetrating radar (GPR) application," Progress In Electromagnetics Research C, Vol. 83, 179-194, 2018.
doi:10.2528/PIERC18032001

10. Xu, X., T. Xia, V. Anbu, and H. Driver, "The development of a high-speed ultra-wide-band ground penetrating radar for rebar detection," ASCE’s Journal of Engineering Mechanics, Vol. 139, 272-285, 2013.
doi:10.1061/(ASCE)EM.1943-7889.0000458

11. Lu, S., G. Cui, X. Yu, L. Kong, and X. Yang, "Cognitive radar waveform design against signal-dependent modulated jamming," Progress In Electromagnetics Research B, Vol. 80, 59-77, 2018.
doi:10.2528/PIERB18010805

12. Lee, J. S., C. Nguyen, and T. Scullion, "New uniplanar subnanosecond monocycle pulse generator and transformer for time-domain microwave application," IEEE Trans. Microwave Theory Tech., Vol. 49, 1126-1129, 2001.

13. Ma, T.-G., C.-J. Wu, P. K. Cheng, and C.-F. Chou, "Ultrawideband monocycle pulse generator with dual resistive loaded shunt stubs," IEEE Microw. Opt. Technol., 459-462, 2007.
doi:10.1002/mop.22145

14. Ruengwaree, A., A. Ghose, J. Weide, and G. Kompa, "Ultra-fast pulse transmitter for UWB microwave radar," 36th European Microwave Conference, 1833-1836, 2006.

15. Guo, Y., G. Zhu, and Z. Zhou, "A novel design and implementation of sub-nanosecond sampling pulse generator for ultra-wideband equivalent sampling receiver," Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 1-5, 2014.

16. Pongsoon, P., K. Bunnjaweht, and D. Kaemarungsi, "Edge-triggered driver circuit for ultra-wideband pulse generator with cascade impulse shaping," 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECT, 1-4, 2012.

17. Protiva, P., J. Mrkvica, and J. Machac, "High power monocycle pulse generator for through-the-wall radar transmitter," Proc. IEEE Asia-Pacific Conf. Circuits Syst., 2324-2327, 2009.

18. Li, Z., X. X. Lv, Y. F. Long, and T. Qin, "An ultra-wideband monocycle pulse generator with good performance," Proc. Int. Conf. Computat. Problem-Solving (ICCP), 253-254, 2011.
doi:10.1109/ICCPS.2011.6092226

19. Zhu, J., Y. Sun, and H. Fang, "Enhanced characteristic basis function method for solving the monostatic radar cross section of conducting targets," Progress In Electromagnetics Research M, Vol. 68, 173-180, 2018.
doi:10.2528/PIERM18022703

20. Younes, A., J. M. Catala-Rivera, F. P. Foix, and A. Driouach, "Simple, compact and low-cost pulse transmitter for UWB microwave radar," Mediterranean Conference on Information & Technologies, 2015.

21. Amdaouch, I., O. Aghzout, A. Naghar, A. V. Alejos, and F. J. Falcone, "Breast tumor detection system based on a compact UWB antenna design," Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018.

22. Borja, B., J. A. Tirado-Mendez, and H. Jardon-Aguilar, "An overview of UWB antennas for microwave imaging systems for cancer detection purposes," Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018.
doi:10.2528/PIERB18030302

23. Baharuddin, M., V. Wissan, J. T. Sri Sumantyo, and H. Kuze, "Equilateral triangular microstrip antenna for circularly-polarized synthetic aperture radar," Progress In Electromagnetics Research C, Vol. 8, 107-120, 2009.
doi:10.2528/PIERC09052202

24. Takemura, N. and S. Ichikawa, "Broadbanding of printed bell-shaped monopole antenna by using short stub for UWB applications," Progress In Electromagnetics Research C, Vol. 78, 57-67, 2017.
doi:10.2528/PIERC17060702