1. Grover, F. W., Inductance Calculations, Chaps. 2 and 13, Dover, New York, 1964.
2. Snow, C., Formulas for Computing Capacitance and Inductance, National Bureau of Standards Circular 544, Washington DC, December 1954.
3. Kalantarov, P. L., Inductance Calculations, National Power Press, Moscow, 1955.
4. Benhama, A., A. C. Williamson, and A. B. J. Reece, "Force and torque computation from 2-D and 3-D nite element eld solutions," IEE Proc. --- Electr. Power Appl., Vol. 146, No. 1, 25-31, January 1999.
doi:10.1049/ip-epa:19990219 Google Scholar
5. Demenko, A. and D. Stachowiak, "Electromagnetic torque calculation using magnetic network methods," COMPEL, Vol. 27, No. 1, 17-26, 2008.
doi:10.1108/03321640810836591 Google Scholar
6. Tarnhuvud, T. and K. Reichert, "Accuracy problems of force and torque calculation in FE-systems," IEEE Trans. Magn., Vol. 24, No. 1, 443-446, January 1988.
doi:10.1109/20.43952 Google Scholar
7. Coulomb, J. L., "A methodology for the determination of global quantities from a nite element analysis and its applications to the evaluation of magnetic forces, torques and stiffness," IEEE Trans. Magn., Vol. 19, No. 6, 2514-2519, November 1983.
doi:10.1109/TMAG.1983.1062812 Google Scholar
8. Coulomb, J. L. and G. Meunier, "Finite element implementation of virtual work principle for magnetic or electric force and torque calculation," IEEE Trans. Magn., Vol. 20, No. 5, 1894-1896, September 1984.
doi:10.1109/TMAG.1984.1063232 Google Scholar
9. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and Stiffness of passive magnetic bearings using permanent magnets, Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088 Google Scholar
10. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and Stiffness of passive magnetic bearings using permanent magnets, Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 1-9, 2009.
doi:10.1109/TMAG.2009.2025315 Google Scholar
11. Babic, S. I. and C. Akyel, "Torque calculation between circular coils with inclined axes in air," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 24, No. 3, 230-243, 2011.
doi:10.1002/jnm.773 Google Scholar
12. Akyel, C., S. I. Babic, S. Kincic, and J. P. Lagace, "Magnetic force calculation between thin circular coils and thin lamentary circular coil in air," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1273-1283, 2007. Google Scholar
13. Babic, S. I. and C. Akyel, "Magnetic force calculation between thin coaxial circular coils in air," IEEE Trans. Magn., Vol. 44, No. 4, 445-452, April 2008.
doi:10.1109/TMAG.2007.915292 Google Scholar
14. Babic, S., S. Milojkovic, Z. Andjelic, B. Krstajic, and J. S. Salon, "Analytical calculation of the 3D magnetostatic eld of a toroidal conductor with rectangular cross section," IEEE Trans. Mag., Vol. 24, No. 2, 3162-3164, 1988.
doi:10.1109/20.92368 Google Scholar
15. Ren, Y., J. Zhu, X. G., F. Shen, and S. Chen, "Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system," Nucl. Fusion, Vol. 55, 093002 (19pp), IOP, International Atomic Energy Agency, 2015. Google Scholar
16. Wang, Z. J. and Y. Ren, "Magnetic force and torque calculation between circular coils with nonparallel axes," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 4, 4901505, August 2014. Google Scholar
17. Ren, Y., G. Kuang, and W. Chen, "Analysis of the magnetic forces generated in the hybrid magnet being built in China," Journal of Fusion Energy, Vol. 34, No. 4, 733-738, 2015.
doi:10.1007/s10894-015-9876-9 Google Scholar
18. Furlani, E. P., "A formula for the levitation force between magnetic disks," IEEE Transactions on Magnetics, Vol. 29, No. 6, 4165-4169, November 1993.
doi:10.1109/20.280867 Google Scholar
19. Furlani, E. P., "Formulas for the force and torque of axial couplings," IEEE Transactions on Magnetics, Vol. 29, No. 5, 2295-2301, September 1993.
doi:10.1109/20.231636 Google Scholar
20. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics, Series 55, 595, Washington DC, December 1972.
21. Gradshteyn, S. and I. M. Rhyzik, Tables of Integrals, Series and Products, Dover, New York, 1972.