Vol. 80
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-04-08
Design and Development of Compact Reconfigurable Tri-Stopband Bandstop Filter Using Hexagonal Metamaterial Cells for Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 80, 93-102, 2019
Abstract
In this paper, a compact reconfigurable tri-band bandstop filter (BSF) with sharp-rejection and high selectivity is presented. The proposed filter is based on a 50\,Ohms microstrip feed line, six hexagonal metamaterial cells (HMCs) with different sizes and switches. The structure of the filter has seven different modes of operation characterized. A good agreement between the simulated and measured results is obtained. The results indicate that the proposed filter design, with overall size of 0.28λgx0.17λg, is a good candidate for multiservice radios applications.
Citation
Khelil Fertas, Farid Ghanem, Mouloud Challal, and Rabia Aksas, "Design and Development of Compact Reconfigurable Tri-Stopband Bandstop Filter Using Hexagonal Metamaterial Cells for Wireless Applications," Progress In Electromagnetics Research M, Vol. 80, 93-102, 2019.
doi:10.2528/PIERM18102305
References

1. Gao, X.-K., H. M. Lee, and S.-P. Gao, "A robust parameter design of wide band DGS filter for common-mode noise mitigation in high-speed electronics," IEEE Trans. on Electromagn. Compat., Vol. 59, No. 6, 1735-1740, 2017.
doi:10.1109/TEMC.2017.2710202        Google Scholar

2. Boutedjar, A., "Design of compact reconfigurable broadband band-stop filter based on a low-pass filter using half circle DGS resonator and multi-layer technique," Progress In Electromagnetics Research C, Vol. 71, 91-100, 2017.        Google Scholar

3. Jadhav, J. B. and P. J. Deore, "A compact planar ultra-wideband bandpass filter with multiple resonant and defected ground structure," AEU - Intern. J. of Electron. and Commun., Vol. 81, 31-36, 2017.
doi:10.1016/j.aeue.2017.07.003        Google Scholar

4. Lalbakhsh, A., G. Karimi, and F. Sabaghi, "Triple mode spiral wideband bandpass filter using symmetric dual-line coupling," E. Lett., 2017.        Google Scholar

5. Arnold, C., J. Parlebas, and T. Zwick, "Reconfigurable waveguide filter with variable bandwidth and center frequency," IEEE Trans. on Microw. Theor. and Techn., Vol. 62, No. 8, 1663-1670, 2014.
doi:10.1109/TMTT.2014.2332298        Google Scholar

6. Cheng, T. and K.-W. Tam, "A wideband bandpass filter with reconfigurable bandwidth based on cross-shaped resonator," IEEE MWCL, 2017.        Google Scholar

7. Cho, Y.-H. and G. M. Rebeiz, "0.73-1.03-GHz tunable bandpass filter with a reconfigurable 2/3/4-pole response," IEEE Trans. on Microw. Theor. and Techn., Vol. 62, No. 2, 290-296, 2014.
doi:10.1109/TMTT.2013.2295766        Google Scholar

8. Feng, W., Y. Shang, et al. "Multifunctional reconfigurable filter using transversal signal-interaction concepts," IEEE MWCL, 2017.        Google Scholar

9. Kheir, M., T. Kröger, and M. Höft, "A new class of highly-miniaturized reconfigurable UWB filters for multi-band multi-standard transceiver architectures," IEEE Access, Vol. 5, 1714-1723, 2017.
doi:10.1109/ACCESS.2017.2670526        Google Scholar

10. Boutejdar, A., et al. "A miniature 5.2-GHz bandstop microstrip filter using multilayer-technique and coupled octagonal defected ground structure," Microwave and Optical Technology Letters, Vol. 51, No. 12, 2810-2813, 2009.
doi:10.1002/mop.24770        Google Scholar

11. Lee, K., T.-H. Lee, et al. "Reconfigurable dual-stopband filters with reduced number of couplings between a transmission line and resonators," IEEE MWCL, Vol. 25, No. 2, 106-108, 2015.        Google Scholar

12. Esmaeili, M. and J. Bornemann, "Novel tunable bandstop resonators in SIW technology and their application to a dual-bandstop filter with one tunable stopband," IEEE MWCL, Vol. 27, No. 1, 40-42, 2017.        Google Scholar

13. Wong, K. W., R. R. Mansour, and G. Weale, "Reconfigurable bandstop and bandpass filters with wideband balun using IPD technology for frequency agile applications," IEEE Trans. on Comput., Packag. and Manuf. Tech., Vol. 7, No. 4, 610-620, 2017.
doi:10.1109/TCPMT.2017.2667580        Google Scholar

14. Tsai, H.-J., B.-C. Huang, et al. "A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator," IEEE MWCL, Vol. 24, No. 5, 297-299, 2014.        Google Scholar

15. Boutejdar, A., "Design of 5GHz-compact reconfigurable DGS-bandpass filter using varactor-diode device and coupling matrix technique," Microwave and Optical Technology Letters, Vol. 58, No. 2, 2016.
doi:10.1002/mop.29561        Google Scholar

16. Han, Z., K. Kohno, et al. "Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array," IEEE J. of Selec. Top. in Quan. Electron., Vol. 21, No. 4, 114-122, 2015.
doi:10.1109/JSTQE.2014.2378591        Google Scholar

17. Mansoul, A., "Switchable multiband slot antenna for 2.4, 3.5 and 5.2 GHz applications," MOTL, Vol. 59, No. 11, 2903-2907, 2017.        Google Scholar

18. Anuja, K., "A survey on metamaterial based microstrip patch antenna," Wirel. Commun., Vol. 9, No. 3, 54-60, 2017.        Google Scholar

19. Semmar, B., R. Aksas, et al. "Numerical determination of permittivity and permeability tensors of a dielectric metamaterial composed of an infinite number of split ring resonators," WPC, Vol. 83, No. 4, 2925-2947, 2015.        Google Scholar

20. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902        Google Scholar

21. Wang, R.-L., J.-F. Wang, et al. "Dual-band suspended stripline filter based on metamaterials," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, IEEE, 2017.        Google Scholar

22. Bhaskar, M., J. Jasmi, and T. Mathew, "Microstrip bandstop filters based on hexagonal complementary split ring resonators," 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), Sept. 2–4, 2015.        Google Scholar

23. Mohammed, M. and B. Suwailam, "Numerical study of bandstop filters based on slotted complementary split ring resonators," Proc. Second International Conf. on TAEECE, 34-37, 2014.        Google Scholar

24. Saktioto, T., R. F. Syahputra, et al. "GHz frequency filtering source using hexagonal metamaterial splitting ring resonators," MOTL, Vol. 59, No. 6, 1337-1340, 2017.        Google Scholar

25. Janković, N., R. Geschke, and V. Crnojević-Bengin, "Compact tri-band bandpass and bandstop filters based on Hilbert-fork resonators," IEEE MWCL, Vol. 23, No. 6, 282-284, 2013.        Google Scholar

26. Boutejdar, A. and S. D. Bennani, "Design and fabrication of tri-stopband bandstop filters using cascaded and multi-armed methods," Adv. Electromagn., Vol. 6, No. 3, 18-24, 2017.
doi:10.7716/aem.v6i3.524        Google Scholar

27. Nachouane, H., A. Najid, et al. "A switchable bandstop-to-bandpass reconfigurable filter for cognitive radio applications," Intern. J. of Microw. and Wirel. Technol., Vol. 9, No. 4, 765-772, 2017.
doi:10.1017/S175907871600074X        Google Scholar