1. Gao, X.-K., H. M. Lee, and S.-P. Gao, "A robust parameter design of wide band DGS filter for common-mode noise mitigation in high-speed electronics," IEEE Trans. on Electromagn. Compat., Vol. 59, No. 6, 1735-1740, 2017.
doi:10.1109/TEMC.2017.2710202 Google Scholar
2. Boutedjar, A., "Design of compact reconfigurable broadband band-stop filter based on a low-pass filter using half circle DGS resonator and multi-layer technique," Progress In Electromagnetics Research C, Vol. 71, 91-100, 2017. Google Scholar
3. Jadhav, J. B. and P. J. Deore, "A compact planar ultra-wideband bandpass filter with multiple resonant and defected ground structure," AEU - Intern. J. of Electron. and Commun., Vol. 81, 31-36, 2017.
doi:10.1016/j.aeue.2017.07.003 Google Scholar
4. Lalbakhsh, A., G. Karimi, and F. Sabaghi, "Triple mode spiral wideband bandpass filter using symmetric dual-line coupling," E. Lett., 2017. Google Scholar
5. Arnold, C., J. Parlebas, and T. Zwick, "Reconfigurable waveguide filter with variable bandwidth and center frequency," IEEE Trans. on Microw. Theor. and Techn., Vol. 62, No. 8, 1663-1670, 2014.
doi:10.1109/TMTT.2014.2332298 Google Scholar
6. Cheng, T. and K.-W. Tam, "A wideband bandpass filter with reconfigurable bandwidth based on cross-shaped resonator," IEEE MWCL, 2017. Google Scholar
7. Cho, Y.-H. and G. M. Rebeiz, "0.73-1.03-GHz tunable bandpass filter with a reconfigurable 2/3/4-pole response," IEEE Trans. on Microw. Theor. and Techn., Vol. 62, No. 2, 290-296, 2014.
doi:10.1109/TMTT.2013.2295766 Google Scholar
8. Feng, W., Y. Shang, et al. "Multifunctional reconfigurable filter using transversal signal-interaction concepts," IEEE MWCL, 2017. Google Scholar
9. Kheir, M., T. Kröger, and M. Höft, "A new class of highly-miniaturized reconfigurable UWB filters for multi-band multi-standard transceiver architectures," IEEE Access, Vol. 5, 1714-1723, 2017.
doi:10.1109/ACCESS.2017.2670526 Google Scholar
10. Boutejdar, A., et al. "A miniature 5.2-GHz bandstop microstrip filter using multilayer-technique and coupled octagonal defected ground structure," Microwave and Optical Technology Letters, Vol. 51, No. 12, 2810-2813, 2009.
doi:10.1002/mop.24770 Google Scholar
11. Lee, K., T.-H. Lee, et al. "Reconfigurable dual-stopband filters with reduced number of couplings between a transmission line and resonators," IEEE MWCL, Vol. 25, No. 2, 106-108, 2015. Google Scholar
12. Esmaeili, M. and J. Bornemann, "Novel tunable bandstop resonators in SIW technology and their application to a dual-bandstop filter with one tunable stopband," IEEE MWCL, Vol. 27, No. 1, 40-42, 2017. Google Scholar
13. Wong, K. W., R. R. Mansour, and G. Weale, "Reconfigurable bandstop and bandpass filters with wideband balun using IPD technology for frequency agile applications," IEEE Trans. on Comput., Packag. and Manuf. Tech., Vol. 7, No. 4, 610-620, 2017.
doi:10.1109/TCPMT.2017.2667580 Google Scholar
14. Tsai, H.-J., B.-C. Huang, et al. "A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator," IEEE MWCL, Vol. 24, No. 5, 297-299, 2014. Google Scholar
15. Boutejdar, A., "Design of 5GHz-compact reconfigurable DGS-bandpass filter using varactor-diode device and coupling matrix technique," Microwave and Optical Technology Letters, Vol. 58, No. 2, 2016.
doi:10.1002/mop.29561 Google Scholar
16. Han, Z., K. Kohno, et al. "Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array," IEEE J. of Selec. Top. in Quan. Electron., Vol. 21, No. 4, 114-122, 2015.
doi:10.1109/JSTQE.2014.2378591 Google Scholar
17. Mansoul, A., "Switchable multiband slot antenna for 2.4, 3.5 and 5.2 GHz applications," MOTL, Vol. 59, No. 11, 2903-2907, 2017. Google Scholar
18. Anuja, K., "A survey on metamaterial based microstrip patch antenna," Wirel. Commun., Vol. 9, No. 3, 54-60, 2017. Google Scholar
19. Semmar, B., R. Aksas, et al. "Numerical determination of permittivity and permeability tensors of a dielectric metamaterial composed of an infinite number of split ring resonators," WPC, Vol. 83, No. 4, 2925-2947, 2015. Google Scholar
20. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902 Google Scholar
21. Wang, R.-L., J.-F. Wang, et al. "Dual-band suspended stripline filter based on metamaterials," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, IEEE, 2017. Google Scholar
22. Bhaskar, M., J. Jasmi, and T. Mathew, "Microstrip bandstop filters based on hexagonal complementary split ring resonators," 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), Sept. 2–4, 2015. Google Scholar
23. Mohammed, M. and B. Suwailam, "Numerical study of bandstop filters based on slotted complementary split ring resonators," Proc. Second International Conf. on TAEECE, 34-37, 2014. Google Scholar
24. Saktioto, T., R. F. Syahputra, et al. "GHz frequency filtering source using hexagonal metamaterial splitting ring resonators," MOTL, Vol. 59, No. 6, 1337-1340, 2017. Google Scholar
25. Janković, N., R. Geschke, and V. Crnojević-Bengin, "Compact tri-band bandpass and bandstop filters based on Hilbert-fork resonators," IEEE MWCL, Vol. 23, No. 6, 282-284, 2013. Google Scholar
26. Boutejdar, A. and S. D. Bennani, "Design and fabrication of tri-stopband bandstop filters using cascaded and multi-armed methods," Adv. Electromagn., Vol. 6, No. 3, 18-24, 2017.
doi:10.7716/aem.v6i3.524 Google Scholar
27. Nachouane, H., A. Najid, et al. "A switchable bandstop-to-bandpass reconfigurable filter for cognitive radio applications," Intern. J. of Microw. and Wirel. Technol., Vol. 9, No. 4, 765-772, 2017.
doi:10.1017/S175907871600074X Google Scholar