1. Slimani, A., S. D. Bennani, A. E. Alami, and M. Amellal, "Gain and bandwidth enhancement of new planar microstrip array antennas geometry for C band weather radar applications," International J. of Microwave and Wireless Technologies, Vol. 9, 1139-1146, 2017.
doi:10.1017/S1759078716001203 Google Scholar
2. Lee, J. I. and J. Yeo, "Modified broadband quasi-Yagi antenna with enhanced gain and bandwidth," International J. of Microwave and Optical Technology Letters, Vol. 55, 406-409, 2013.
doi:10.1002/mop.27325 Google Scholar
3. Baudha, S. and D. K. Vishwakarma, "Bandwidth enhancement of a planar monopole microstrip patch antenna," International J. of Microwave and Wireless Technologies, Vol. 8, 237-242, 2016.
doi:10.1017/S175907871400141X Google Scholar
4. Rafi, G. and L. Shafai, "Broadband microstrip patch antenna with V-slot sign in or purchase," IEE Proceedings Microwaves Antennas and Propagation, Vol. 151, 435-440, 2004.
doi:10.1049/ip-map:20040846 Google Scholar
5. Bhowmik, A. and A. K. Bhattacharjee, "Design of A-shaped coaxial fed compact broadband antenna for WLAN/WiMAX/UWB lower-band, applications," International J. of Microwave and Optical Technology Letters, Vol. 59, 848-853, 2017.
doi:10.1002/mop.30411 Google Scholar
6. Liu, J., Q. Xue, and H. Wong, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Trans. on Antennas and Propagation, Vol. 61, 11-18, 2013.
doi:10.1109/TAP.2012.2214996 Google Scholar
7. Yoon, J. H., Y. C. Rhee, and Y. K. Jang, "Compact monopole antenna design for WLAN/WiMAX triple-band operations," Microwave and Optical Technology Letters, Vol. 54, 1838-1846, 2012.
doi:10.1002/mop.26963 Google Scholar
8. Sung, Y., "Compact dual-band antenna for 2.4/5.2/5.8 GHz WLAN service for laptop computer applications," Microwave and Optical Technology Letters, Vol. 57, 2207-2213, 2015.
doi:10.1002/mop.29289 Google Scholar
9. Mandal, K. and P. P. Sarkar, "A compact low profile wideband U-shape antenna with slotted circular ground plane," International J. of Electronics and Communications, Vol. 70, 336-340, 2016.
doi:10.1016/j.aeue.2015.12.011 Google Scholar
10. Gautama, A. K., A. Bisht, and B. K. Kanaujia, "A wideband antenna with defected ground plane for WLAN/WiMAX applications," International J. of Electronics and Communications, Vol. 70, No. 3, 353-358, 2016. Google Scholar
11. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11N and IEEE 802.16E," Microwave and Optical Technology Letters, Vol. 59, 1000-1006, 2017.
doi:10.1002/mop.30454 Google Scholar
12. Malekpour, N. and M. A. Honarvar, "Compact UWB MIMO antenna with band notched characteristic," Microwave and Optical Technology Letters, Vol. 59, 1037-1041, 2017.
doi:10.1002/mop.30462 Google Scholar
13. Pan, M. C. and K. L. Wong, "A broadband slot-loaded trapezoid microstrip antenna," Microwave and Optical Technology Letters, Vol. 24, 16-19, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<16::AID-MOP6>3.0.CO;2-Y Google Scholar
14. Hu, B. and S. Z. Nasimuddin, "Broadband circularly polarized moon-shaped monopole antenna," Microwave and Optical Technology Letters, Vol. 57, 1135-1139, 2015.
doi:10.1002/mop.29035 Google Scholar
15. Wong, K. L. and P. W. Lin, "Integration of monopole slot and monopole strip for internal WWAN handset antenna," Microwave and Optical Technology Letters, Vol. 54, 1718-1723, 2012.
doi:10.1002/mop.26870 Google Scholar
16. Chang, C. H., W. C. Wei, P. J. Ma, and S. Y. Huang, "Simple printed WWAN monopole slot antenna with parasitic shorted strips for slim mobile phone application," Microwave and Optical Technology Letters, Vol. 55, 2835-2841, 2013.
doi:10.1002/mop.27959 Google Scholar
17. Chen, W. S., C. H. Lin, B. Y. Lee, W. H. Hsu, and F. S. Chang, "Monopole slot antenna design for WLAN MIMO application," Microwave and Optical Technology Letters, Vol. 54, 1103-1107, 2012.
doi:10.1002/mop.26740 Google Scholar
18. Sung, Y., "Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch," IEEE Trans. on Antennas and Propagation, Vol. 60, No. 4, 1712-1716, 2012.
doi:10.1109/TAP.2012.2186224 Google Scholar
19. Kim, G. H. and T. Y. Yun, "Compact ultra wideband monopole antenna with an inverted-L-shaped coupled strip," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1291-1294, 2013.
doi:10.1109/LAWP.2013.2283863 Google Scholar
20. Le, T. T., V. H. The, and H. C. Park, "Simple and compact slot-patch antenna with broadband circularly polarized radiation," Microwave and Optical Technology Letters, Vol. 58, No. 7, 1634-1641, 2016.
doi:10.1002/mop.29868 Google Scholar
21. Baudha, S. and D. K. Vishwakarma, "Bandwidth enhancement of a planar monopole microstrip patch antenna," International J. of Microwave and Wireless Technologies, Vol. 8, No. 2, 237-242, 2016.
doi:10.1017/S175907871400141X Google Scholar
22. Kundu, A., U. Chakraborty, and A. K. Bhattacharjee, "Design of a compact wide band microstrip antenna with very low VSWR for WiMAX applications," International J. of Microwave and Wireless Technologies, Vol. 9, No. 3, 685-690, 2017.
doi:10.1017/S1759078716000374 Google Scholar
23. Kumar, S. and D. K. Vishwakarma, "Miniaturized dual broadband hexagonal slot monopole antenna," IETE Journal of Research, Vol. 62, No. 5, 671-678, 2016.
doi:10.1080/03772063.2016.1160804 Google Scholar
24. Fei, P., Y. C. Jiao, Y. Zhu, and F. S. Zhang, "Compact CPW-fed monopole antenna and miniaturized ACS-fed half monopole antenna for UWB applications," Microwave and Optical Technology Letters, Vol. 54, No. 7, 1605-1609, 2012.
doi:10.1002/mop.26909 Google Scholar
25. Gao, G. P., B. Hu, and J. S. Zhang, "Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 567-570, 2013.
doi:10.1109/LAWP.2013.2259790 Google Scholar
26. Mandal, K. and P. P. Sarkar, "Reduced-size microstrip antenna for Wi-MAX and WLAN," Microwave Review, Vol. 21, 2-5, 2015. Google Scholar
27. Tahir, F. A., "A novel single-layer frequency selective surface for gain enhancement of SWB antennas," Microwave and Optical Technology Letters, Vol. 58, 2030-2035, 2016.
doi:10.1002/mop.29966 Google Scholar
28. Mandal, B., A. Chatterjee, and S. K. Parui, "Acrylic substrate based low profile wearable button antenna with FSS layer for WLAN and Wi-Fi applications," Microwave and Optical Technology Letters, Vol. 57, 1033-1038, 2015.
doi:10.1002/mop.29012 Google Scholar
29. Moharamzadeh, E. and A. M. Jawan, "Triple-band frequency-selective surfaces to enhance gain of X-band triangle slot antenna," IEEE Antennas Wireless Propagation Letters, Vol. 12, 1145-1148, 2013.
doi:10.1109/LAWP.2013.2281074 Google Scholar
30. Chen, H.-Y. and Y. Tao, "Antenna gain and bandwidth enhancement using frequency selective surface with double rectangular ring elements," ISAPE, 271-274, Nov. 29–Dec. 2, Guangzhou, China, 2010. Google Scholar
31. Kushwaha, N., R. Kumar, and T. Oli, "Design of a high gain Ultrawideband slot antenna using frequency Selective surfaces," Microwave and Optical Technology Letters, Vol. 56, 1498-1502, 2014.
doi:10.1002/mop.28324 Google Scholar
32. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas Wireless Propagation Letters, Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509 Google Scholar
33. Bakir, M., K. Delihacioglu, M. Karaaslan, F. Dincer, and C. Sabah, "U-shaped frequency selective surfaces for single- and dual-band applications together with absorber and sensor configurations," IET Microwaves, Antennas & Propagation, Vol. 10, 293-300, 2016.
doi:10.1049/iet-map.2015.0341 Google Scholar
34. Dogan, E., E. Unal, D. Kapusuz, M. Karaaslan, and C. Sabah, "Microstrip patch antenna covered with left handed metamaterial," ACES Journal, Vol. 29, 178-183, 2014. Google Scholar
35. Lo, Y. T. and S. W. Lee, Antenna Handbook, 13.13-13.20, Van Nostrand Reinhold Co., 1988.
doi:10.1007/978-1-4615-6459-1
36. Ray, A., M. Kahar, S. Sarkar, S. Biswas, D. Sarkar, and P. P. Sarkar, "A novel broad and multiband frequency selective surface," Microwave and Optical Technology Letters, Vol. 54, 1353-1355, 2012.
doi:10.1002/mop.26843 Google Scholar