Vol. 80
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-05-09
Novel Method for Generating Electromagnetic Vortex Wave
By
Progress In Electromagnetics Research M, Vol. 80, 215-225, 2019
Abstract
Electromagnetic (EM) vortex wave carries orbital angular momentum (OAM), which has been proposed for improve anti-interference performance, spectral efficiency, and message capacity in radio communications. Multiple sub-channels of propagation are achieved by different twisting degrees of EM wave. In order to develop the theory and technique of the OAM, works must be done to study the generation of vortex wave. There exist several devices to generate vortex wave, such as phase plate, holographic diffraction gratings, spiral reflectors, and antenna arrays. In this paper, based on typical parabolic antenna, a new approach to generate vortex wave carrying OAM in radio frequency through coating specific controllable complex dielectric constant material on parabolic antenna is introduced. From the results of the proposed antenna, we conclude that parabolic antenna with materials arranged by a specific rule on the reflector has capacity of generating an EM wave with clockwise and anti-clockwise phase distributions around beam-axis. The new method generating OAM is simple and suitable to be well applied in wireless electronic technology.
Citation
Gengqi Zheng Bao-Hua Sun Shuhong Gong , "Novel Method for Generating Electromagnetic Vortex Wave," Progress In Electromagnetics Research M, Vol. 80, 215-225, 2019.
doi:10.2528/PIERM18111101
http://www.jpier.org/PIERM/pier.php?paper=18111101
References

1. Wakayama, T., T. Higashiguchi, K. Sakaue, M. Washio, and Y. Otani, "Demonstration of a terahertz pure vector beam by tailoring geometric phase," Scientific Reports, Vol. 8, 8690, 2018.
doi:10.1038/s41598-018-26964-7

2. Wei, W., K. Mahdjoubi, C. Brousseau, and O. Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electronics Letters, Vol. 51, No. 6, 442-443, 2015.
doi:10.1049/el.2014.4425

3. Thidé, B., H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701

4. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio - A system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

5. Tamburini, F., B. Thidé, G. Molina-Terriza, and G. Anzolin, "Twisting of light around rotating black holes," Nature Physical, Vol. 7, No. 3, 195-197, 2010.
doi:10.1038/nphys1907

6. Cartlidge, E., "Adding a twist to radio technology," Nature Medical, 2011.

7. Tamburini, F., E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, "Encoding many channels in the same frequency through radio vorticity: First experimental test," New Journal of Physics, Vol. 14, No. 11, 78001-78004, 2012.
doi:10.1088/1367-2630/14/11/118002

8. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

9. Deng, C. J., W. H. Chen, Z. J. Zhang, Y. Li, and Z. H. Feng, "Generation of OAM radio waves using circular Vivaldi antenna array," Internation Journal of Antennas and Propagation, Vol. 2, 607-610, 2013.

10. Bai, Q., A. Tennant, B. Allen, and M. U. Rehan, "Generation of orbital angular momentum (OAM) radio beams with phased patch array," Antennas & Propagation Conference, Loughborough, UK, 2014.

11. Spinello, F., E. Mari, M. Oldoni, R. A. Ravanelli, and C. G. Someda, "Experimental near field OAM-based communication with circular patch array," Physics, 2015.

12. Wei, W. L., K. Mahdjoubi, C. Brousseau, and O. Emile, "Horn antenna for generating orbital angular momentum (OAM) waves," Loughborough Antennas & Propagation Conference, 1420-1427, Loughborough, UK, 2016.

13. Shi, C. B., Y. B. Li, W.Wu, R. Y.Wu, and T. J. Cui, "An ultrathin spiral phase plate for generation of OAM radio waves," Loughborough Antennas & Propagation Conference, Loughborough, UK, 2016.

14. Mao, F., M. Huang, T. Li, J. Zhang, and C. Yang, "Broadband generation of orbital angular momentum carrying beams in RF regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.
doi:10.2528/PIER17082302

15. Hui, X., et al., "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431

16. Cheng, L., W. Hong, and Z. C. Hao, "Design and implementation of planar reflection spiral phase plate for beams with orbital angular momentum," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 260-264, 2017.
doi:10.1049/iet-map.2016.0519

17. Zhou, Z. Y., et al., "High efficiency SHG of orbital angular momentum light in an external cavity," Physics, 2014.

18. Shi, B. S., et al., "Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity," Optics Express, Vol. 22, No. 19, 23673-23678, 2014.
doi:10.1364/OE.22.022917

19. Yu, S. and L. Long, "New method for generating orbital angular momentum vortex beams in the radio frequency domain," 2016 Progress In Electromagnetic Research Symposium (PIERS), 4121, Shanghai, China, Aug. 8–11, 2016.

20. Grekou, G., G. Dubost, and A. Madani, "Plane equiangular 4-ARM spiral antenna with conical reflector isolated or fitted into a structure," European Microwave Conference, 2007.

21. Li, H., et al., "A low-profile dual-polarized microstrip antenna array for dual-mode OAM applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3022-3025, 2017.
doi:10.1109/LAWP.2017.2758520

22. Qin, F., et al., "A high-gain shared-aperture dual-band OAM antenna with parabolic reflector," 12th European Conference on Antennas and Propagation, 2018.

23. Liu, D., et al., "Multiplexed OAM wave communication with two-OAM-mode antenna systems," IEEE Access, Vol. 7, 4160-4166, 2019.
doi:10.1109/ACCESS.2018.2886553