1. Ozbay, E. and M. Bayindir, "Physics and applications of defect structures in photonic crystals,", A. S. Shumovsky, V. I. Rupasov, (eds.), ``Quantum communication and information technologies,'' NATO Science Series (Series II: Mathematics, Physics and Chemistry), Vol. 113, Springer, 2003, Philos. Mag., Vol. 14, 60-65, 1907.
doi:10.1038/nphoton.2007.141 NATO Science Series (Series II: Mathematics, Physics and Chemistry), Vol. 113, Springer, 2003, Philos. Mag., Vol. 14, 60-65, 1907&doi=10.1038/nphoton.2007.141' target='_blank'> Google Scholar
2. Noda, S., M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics, Vol. 1, 449-458, 2007.
doi:10.1364/OPEX.14.000858 Google Scholar
3. Ma, G., J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, "Ultrafast all-optical switching in one-dimensional photonic crystal with two defects," Opt. Express, Vol. 14, 858-865, 2006.
doi:10.1364/JOSAB.16.000275 Google Scholar
4. Painter, O., J. Vučković, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B, Vol. 16, No. 2, 1999. Google Scholar
5. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. B, Vol. 76, No. 14, 2480-2483, 1996.
doi:10.1016/0022-460X(90)90779-Y Google Scholar
6. Pierre, C., "Weak and strong vibration localization in disordered structures: A statistical investigation," Journal of Sound and Vibration, Vol. 139, 111-132, 1990.
doi:10.1016/0020-7683(77)90014-2 Google Scholar
7. Ziegler, F., "Wave propagation in periodic and disordered layered composite elastic materials," International Journal of Solids and Structures, Vol. 13, 293-305, 1977.
doi:10.1063/1.1597416 Google Scholar
8. Munday, J. N. and W. M. Robertson, "Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic crystal," Appl. Phys. Lett., Vol. 83, 1053, 2003. Google Scholar
9. Chen, C.-P., T. Anada, S. Greedy, T. M. Benson, and P. Sewell, "A novel photonic crystal band-pass filter using degenerate modes of a point-defect microcavity for terahertz communication systems," Microwave and Optical Technology Letters, Vol. 56, 792-797, 2014.
doi:10.1088/2040-8978/16/12/125005 Google Scholar
10. Fan, H.-M., T.-B. Wang, N.-H. Liu, J.-T. Liu, Q.-H. Liao, and T.-B. Yu, "Tunable plasmonic band gap and defect mode in one-dimensional photonic crystal covered with graphene," J. Opt., Vol. 16, 125005, 2014.
doi:10.1088/0022-3727/44/20/205107 Google Scholar
11. Hamidi, S. M., M. M. Tehranchi, and M. Shasti, "Engineered one-dimensional magneto-photonic crystals for wavelength division multiplexing systems," J. Phys. D: Appl. Phys., Vol. 44, 205107, 2011.
doi:10.1615/TelecomRadEng.v72.i20.50 Google Scholar
12. Kharchenko, A. A. and S. I. Tarapov, "The spectrum of one-dimensional magnetophotonic crystal in the vicinity of the ferromagnetic resonance: Magnetic field dependence," Telecommunications and Radio Engineering, Vol. 72, No. 20, 1865-1872, 2013.
doi:10.1364/OME.4.002542 Google Scholar
13. Lee, K. J., J. W. Wu, and K. Kim, "Defect modes in a one-dimensional photonic crystal with a chiral defect layer," Optical Materials Express, Vol. 4, No. 12, 2542-2550, 2014.
doi:10.2528/PIERL16090903 Google Scholar
14. Ivzhenko, L. I., E. N. Odarenko, and S. I. Tarapov, "Mechanically tunable wire medium metamaterial in the millimeter wave band," Progress In Electromagnetics Research Letters, Vol. 64, 93-98, 2016.
doi:10.1615/TelecomRadEng.v76.i19.10 Google Scholar
15. Ivzhenko, L. I., D. I. Yudina, and S. I. Tarapov, "Defective modes in an anisotropic wire metamaterial in the microwave range," Telecommunications and Radio Engineering, Vol. 76, No. 19, 1681-1688, 2017.
doi:10.1109/TAP.1962.1137809 Google Scholar
16. Rotman, W., "Plasma simulation by artificial and parallel plate media," IRE Trans. Ant. Propagat., Vol. 10, No. 1, 82-95, 1962.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
17. Pendry, J. B., A. J. Holden, W. J. Stewart, et al. "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996. Google Scholar
18. Valitov, R. A., S. F. Dyubko, V. V. Kamyshan, and V. P. Sheiko, "Method for measuring the field distribution in an open reson," Soviet Physics - JETP, Vol. 20, No. 4, 791-1077, 1965.
doi:10.4028/www.scientific.net/SSP.214.75 Google Scholar
19. Kozhara, L. I., S. Y. Polevoy, and I. V. Popov, "Technique for analysis of the spatial field distribution in tapered wire medium," Solid State Phenomena, Vol. 214, 75-82, 2014.
doi:10.1016/j.cpc.2009.11.008 Google Scholar
20. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, 2010. Google Scholar