1. Ozbay, E. and M. Bayindir, "Physics and applications of defect structures in photonic crystals,", A. S. Shumovsky, V. I. Rupasov, (eds.), ``Quantum communication and information technologies,'' NATO Science Series (Series II: Mathematics, Physics and Chemistry), Vol. 113, Springer, 2003, Philos. Mag., Vol. 14, 60-65, 1907.
doi:10.1038/nphoton.2007.141
2. Noda, S., M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics, Vol. 1, 449-458, 2007.
doi:10.1364/OPEX.14.000858
3. Ma, G., J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, "Ultrafast all-optical switching in one-dimensional photonic crystal with two defects," Opt. Express, Vol. 14, 858-865, 2006.
doi:10.1364/JOSAB.16.000275
4. Painter, O., J. Vučković, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B, Vol. 16, No. 2, 1999.
5. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. B, Vol. 76, No. 14, 2480-2483, 1996.
doi:10.1016/0022-460X(90)90779-Y
6. Pierre, C., "Weak and strong vibration localization in disordered structures: A statistical investigation," Journal of Sound and Vibration, Vol. 139, 111-132, 1990.
doi:10.1016/0020-7683(77)90014-2
7. Ziegler, F., "Wave propagation in periodic and disordered layered composite elastic materials," International Journal of Solids and Structures, Vol. 13, 293-305, 1977.
doi:10.1063/1.1597416
8. Munday, J. N. and W. M. Robertson, "Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic crystal," Appl. Phys. Lett., Vol. 83, 1053, 2003.
9. Chen, C.-P., T. Anada, S. Greedy, T. M. Benson, and P. Sewell, "A novel photonic crystal band-pass filter using degenerate modes of a point-defect microcavity for terahertz communication systems," Microwave and Optical Technology Letters, Vol. 56, 792-797, 2014.
doi:10.1088/2040-8978/16/12/125005
10. Fan, H.-M., T.-B. Wang, N.-H. Liu, J.-T. Liu, Q.-H. Liao, and T.-B. Yu, "Tunable plasmonic band gap and defect mode in one-dimensional photonic crystal covered with graphene," J. Opt., Vol. 16, 125005, 2014.
doi:10.1088/0022-3727/44/20/205107
11. Hamidi, S. M., M. M. Tehranchi, and M. Shasti, "Engineered one-dimensional magneto-photonic crystals for wavelength division multiplexing systems," J. Phys. D: Appl. Phys., Vol. 44, 205107, 2011.
doi:10.1615/TelecomRadEng.v72.i20.50
12. Kharchenko, A. A. and S. I. Tarapov, "The spectrum of one-dimensional magnetophotonic crystal in the vicinity of the ferromagnetic resonance: Magnetic field dependence," Telecommunications and Radio Engineering, Vol. 72, No. 20, 1865-1872, 2013.
doi:10.1364/OME.4.002542
13. Lee, K. J., J. W. Wu, and K. Kim, "Defect modes in a one-dimensional photonic crystal with a chiral defect layer," Optical Materials Express, Vol. 4, No. 12, 2542-2550, 2014.
doi:10.2528/PIERL16090903
14. Ivzhenko, L. I., E. N. Odarenko, and S. I. Tarapov, "Mechanically tunable wire medium metamaterial in the millimeter wave band," Progress In Electromagnetics Research Letters, Vol. 64, 93-98, 2016.
doi:10.1615/TelecomRadEng.v76.i19.10
15. Ivzhenko, L. I., D. I. Yudina, and S. I. Tarapov, "Defective modes in an anisotropic wire metamaterial in the microwave range," Telecommunications and Radio Engineering, Vol. 76, No. 19, 1681-1688, 2017.
doi:10.1109/TAP.1962.1137809
16. Rotman, W., "Plasma simulation by artificial and parallel plate media," IRE Trans. Ant. Propagat., Vol. 10, No. 1, 82-95, 1962.
doi:10.1103/PhysRevLett.76.4773
17. Pendry, J. B., A. J. Holden, W. J. Stewart, et al. "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
18. Valitov, R. A., S. F. Dyubko, V. V. Kamyshan, and V. P. Sheiko, "Method for measuring the field distribution in an open reson," Soviet Physics - JETP, Vol. 20, No. 4, 791-1077, 1965.
doi:10.4028/www.scientific.net/SSP.214.75
19. Kozhara, L. I., S. Y. Polevoy, and I. V. Popov, "Technique for analysis of the spatial field distribution in tapered wire medium," Solid State Phenomena, Vol. 214, 75-82, 2014.
doi:10.1016/j.cpc.2009.11.008
20. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, 2010.