1. Knott, E. F., J. Shaeffer, and M. Tuley, Radar Cross Section, Sci. Tech. Publishing, 2004.
doi:10.1049/SBRA026E
2. Chen, J., Q. Cheng, J. Zhao, D. S. Dong, and T.-J. Cui, "Reduction of radar cross section based on a metasurface," Progress In Electromagnetics Research, Vol. 146, 71-76, 2014.
doi:10.2528/PIER14022606
3. Chen, C., Z. Li, L. Liu, J. Xu, P. Ning, B. Xu, X. Chen, and C. Q. Gu, "A circularly-polarized metasurfaced dipole antenna with wide axial-ratio beamwidth and RCS reduction functions," Progress In Electromagnetics Research, Vol. 154, 79-85, 2015.
doi:10.2528/PIER15092401
4. Jiang, W., Y. Xue, and S.-X. Gong, "Polarization conversion metasurface for broadband radar cross section reduction," Progress In Electromagnetics Research Letters, Vol. 62, 9-15, 2016.
doi:10.2528/PIERL16060504
5. Cui, T. J., M. Q. Qi, X. Wan, et al. "Coding metamaterials, digital metamaterials and programmable metamaterials," Light Science & Applications, Vol. 3, No. 10, e2181-9, 2014.
doi:10.1038/lsa.2014.99
6. Xiao, L., J. Gao, L. Xu, et al. "A coding diffuse metasurface for RCS reduction," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 724-727, 2017.
7. Zhao, Y., X. Cao, J. Gao, et al. "Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm," Scientific Reports, Vol. 6, 238961-9, 2016.
8. Sun, H., C. Gu, X. Chen, et al. "Broadband and broad-angle polarization-independent metasurface for radar cross section reduction," Scientific Reports, Vol. 7, 407821-9, 2017.
9. Si, J. L., Y. C. Xiang, M. X. Li, et al. "Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm," Scientific Reports, Vol. 5, 374091-12, 2016.
10. Sui, S., H. Ma, J. Wang, et al. "Absorptive coding metasurface for further radar cross section reduction," Journal of Physics D: Applied Physics, Vol. 51, No. 6, 0656031-6, 2017.
11. Zhou, Y., X. Y. Cao, J. Gao, et al. "RCS reduction for grazing incidence based on coding metasurface," Electronics Letters, Vol. 53, No. 20, 1381-1383, 2017.
doi:10.1049/el.2017.2414
12. Wang, K., J. Zhao, Q. Cheng, et al. "Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, No. 4, 59351-6, 2014.
13. Su, J., Y. Lu, H. Zhang, et al. "Ultra-wideband, wide angle and polarization-insensitive specular reflection reduction by metasurface based on parameter-adjustable meta-atoms," Scientific Reports, Vol. 7, 422831-11, 2017.
14. Su, J., H. He, Z. Li, et al. "Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering," Scientific Reports, Vol. 8, No. 1, 81821-9, 2018.
15. Su, J., Y. Lu, Z. Zheng, et al. "Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth," Journal of Applied Physics, Vol. 120, No. 20, 2051071-11, 2016.
doi:10.1063/1.4968788
16. Gao, X., X. Han, W. P. Cao, et al. "Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurfaces," IEEE Transactions on Antennas & Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392
17. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proc. of 1995 IEEE Int. Conf. Neural Networks, Vol. 4, No. 8, 1942-1948, 2011.