Vol. 87
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-10-22
Gain Enhancement of Planar Dipole Antenna Using Grounded Metamaterial
By
Progress In Electromagnetics Research Letters, Vol. 87, 123-130, 2019
Abstract
In this paper, a simple approach for enhancing the gain of a planar dipole antenna using the concept of grounded metamaterial (MTM) has been proposed. In this regard, a magnetic metamaterial with Mu-very large (MVL) property has been utilised to increase the gain of the electric dipole source. A fully planar structure has been configured due to the placement of the metamaterial just over the ground plane. A significant amount of gain improvement (about 3.7 dB) of the dipole antenna can be attained using the metamaterial. In addition, a fair increase of fractional bandwidth by 2.2% has been obtained due to the loading of the metamaterial. A comparative study with respect to recently reported literature for the gain enhancement of planar dipole has also been discussed. The proposed antenna is a worthy candidate for wireless communication owing to the high gain, low profile, and wide bandwidth characteristics.
Citation
Goutam Kumar Das, Rahul Dutta, Debasis Mitra, and Monojit Mitra, "Gain Enhancement of Planar Dipole Antenna Using Grounded Metamaterial," Progress In Electromagnetics Research Letters, Vol. 87, 123-130, 2019.
doi:10.2528/PIERL19060503
References

1. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902        Google Scholar

2. Mishra, N. and R. K. Chaudhary, "A compact CPW fed CRR loaded four element metamaterial array antenna for wireless application," Progress In Electromagnetics Research, Vol. 159, 15-26, 2017.
doi:10.2528/PIER17021304        Google Scholar

3. Heydari, S., P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, "Circular polarization fractal slot by Jerusalem cross slot for wireless applications," Progress In Electromagnetics Research Letters, Vol. 63, 79-84, 2016.
doi:10.2528/PIERL16070802        Google Scholar

4. Mansouri, Z., A. S. Arezoomand, S. Heydari, and F. B. Zarrabi, "Dual notch UWB fork monopole antenna with CRLH metamaterial load," Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016.
doi:10.2528/PIERC16040711        Google Scholar

5. Mishra, N., A. Gupta, and R. K. Chaudhary, "A compact CPW-fed wideband metamaterial antenna using Ω-shaped interdigital capacitor for mobile applications," Microw. Opt. Tech. Lett., Vol. 57, No. 11, 2558-2562, 2015.
doi:10.1002/mop.29402        Google Scholar

6. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microw. Opt. Tech. Lett., Vol. 58, No. 1, 71-75, 2016.
doi:10.1002/mop.29494        Google Scholar

7. Ziolkwoski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2626-2640, October 2003.
doi:10.1109/TAP.2003.817561        Google Scholar

8. Li, D., Z. Szabo, X. Qing, E. P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Dec. 2012.
doi:10.1109/TAP.2012.2213231        Google Scholar

9. Ju, J., K. Dongho, J. L. Wangjoo, and I. C. Jaeick, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microw. Opt. Tech. Lett., Vol. 51, No. 8, 1973-1976, Aug. 2009.
doi:10.1002/mop.24469        Google Scholar

10. Sarkhel, A. and S. R. B. Chaudhuri, "Enhanced-gain printed slot antenna using an electric metasurface superstrate," Appl. Phys. A, Vol. 122, 934, 2016.
doi:10.1007/s00339-016-0464-2        Google Scholar

11. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate," Microw. Opt. Tech. Lett., Vol. 43, 462-467, Dec. 2004.
doi:10.1002/mop.20502        Google Scholar

12. Chaimool, S., C. Rakluea, and P. Akkaraekthalin, "Compact wideband microstrip thinned array antenna using EBG supersrate," AEU-International Journal of Electronics and Communication, Vol. 66, No. 1, 49-53, 2012.
doi:10.1016/j.aeue.2011.04.015        Google Scholar

13. Mittra, R., Y. Li, and K. Yoo, "A comparative study of directivity enhancement of patch antennas using three different superstrates," Microwave & Optical Lett., Vol. 52, No. 2, 327-331, Feb. 2010.
doi:10.1002/mop.24898        Google Scholar

14. Lee, Y. J., W. S. Park, J. Yeo, and R. Mittra, "Directivity enhancement of printed antennas using a class of metamaterial superstrates," Electromagnetics, Vol. 26, No. 3–4, 203-218, 2005.        Google Scholar

15. Lovat, G., P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 1017-1030, 2006.
doi:10.1109/TAP.2006.869925        Google Scholar

16. Lovat, G., P. Burghignoli, F. Capolino, and D. R. Jackson, "Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 177-183, 2007.
doi:10.1049/iet-map:20050353        Google Scholar

17. Mitra, D., A. Sarkhel, O. Kundu, and S. R. B. Chaudhuri, "Design of compact and high directive slot antenna using grounded metamaterial slab," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 811-814, 2015.
doi:10.1109/LAWP.2014.2380772        Google Scholar

18. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 300-305, 2016.
doi:10.1109/TAP.2015.2496628        Google Scholar

19. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Phys. Lett., Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681        Google Scholar

20. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [education column]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515        Google Scholar

21. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Gain enhancement of millimetre wave antenna with metamaterial loading," International Symposium on Antennas and Propag., Phuket, Thailand, 2017.        Google Scholar

22. Yeo, J. and J.-I. Lee, "Broadband flat gain enhancement of planar double dipole quasi-yagi antenna using multiple directors," Progress In Electromagnetics Research C, Vol. 65, 1-9, 2016.
doi:10.2528/PIERC16042105        Google Scholar

23. Kesornpatumanun, V., P. Boonek, W. Silabut, N. Homsup, and W. Kuhirun, "High directivity and gain enhancement for small planar dipole antenna at 11 GHz using symmetrical pyramidal block based on epsilon negative medium," International Scholarly and Scientific Research and Innovation, Vol. 8, No. 5, 817-820, 2014.        Google Scholar