1. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902 Google Scholar
2. Mishra, N. and R. K. Chaudhary, "A compact CPW fed CRR loaded four element metamaterial array antenna for wireless application," Progress In Electromagnetics Research, Vol. 159, 15-26, 2017.
doi:10.2528/PIER17021304 Google Scholar
3. Heydari, S., P. Jahangiri, A. S. Arezoomand, and F. B. Zarrabi, "Circular polarization fractal slot by Jerusalem cross slot for wireless applications," Progress In Electromagnetics Research Letters, Vol. 63, 79-84, 2016.
doi:10.2528/PIERL16070802 Google Scholar
4. Mansouri, Z., A. S. Arezoomand, S. Heydari, and F. B. Zarrabi, "Dual notch UWB fork monopole antenna with CRLH metamaterial load," Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016.
doi:10.2528/PIERC16040711 Google Scholar
5. Mishra, N., A. Gupta, and R. K. Chaudhary, "A compact CPW-fed wideband metamaterial antenna using Ω-shaped interdigital capacitor for mobile applications," Microw. Opt. Tech. Lett., Vol. 57, No. 11, 2558-2562, 2015.
doi:10.1002/mop.29402 Google Scholar
6. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microw. Opt. Tech. Lett., Vol. 58, No. 1, 71-75, 2016.
doi:10.1002/mop.29494 Google Scholar
7. Ziolkwoski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2626-2640, October 2003.
doi:10.1109/TAP.2003.817561 Google Scholar
8. Li, D., Z. Szabo, X. Qing, E. P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Dec. 2012.
doi:10.1109/TAP.2012.2213231 Google Scholar
9. Ju, J., K. Dongho, J. L. Wangjoo, and I. C. Jaeick, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microw. Opt. Tech. Lett., Vol. 51, No. 8, 1973-1976, Aug. 2009.
doi:10.1002/mop.24469 Google Scholar
10. Sarkhel, A. and S. R. B. Chaudhuri, "Enhanced-gain printed slot antenna using an electric metasurface superstrate," Appl. Phys. A, Vol. 122, 934, 2016.
doi:10.1007/s00339-016-0464-2 Google Scholar
11. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate," Microw. Opt. Tech. Lett., Vol. 43, 462-467, Dec. 2004.
doi:10.1002/mop.20502 Google Scholar
12. Chaimool, S., C. Rakluea, and P. Akkaraekthalin, "Compact wideband microstrip thinned array antenna using EBG supersrate," AEU-International Journal of Electronics and Communication, Vol. 66, No. 1, 49-53, 2012.
doi:10.1016/j.aeue.2011.04.015 Google Scholar
13. Mittra, R., Y. Li, and K. Yoo, "A comparative study of directivity enhancement of patch antennas using three different superstrates," Microwave & Optical Lett., Vol. 52, No. 2, 327-331, Feb. 2010.
doi:10.1002/mop.24898 Google Scholar
14. Lee, Y. J., W. S. Park, J. Yeo, and R. Mittra, "Directivity enhancement of printed antennas using a class of metamaterial superstrates," Electromagnetics, Vol. 26, No. 3–4, 203-218, 2005. Google Scholar
15. Lovat, G., P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 1017-1030, 2006.
doi:10.1109/TAP.2006.869925 Google Scholar
16. Lovat, G., P. Burghignoli, F. Capolino, and D. R. Jackson, "Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 177-183, 2007.
doi:10.1049/iet-map:20050353 Google Scholar
17. Mitra, D., A. Sarkhel, O. Kundu, and S. R. B. Chaudhuri, "Design of compact and high directive slot antenna using grounded metamaterial slab," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 811-814, 2015.
doi:10.1109/LAWP.2014.2380772 Google Scholar
18. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 300-305, 2016.
doi:10.1109/TAP.2015.2496628 Google Scholar
19. Schurig, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Phys. Lett., Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681 Google Scholar
20. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator [education column]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 202-211, 2013.
doi:10.1109/MAP.2013.6735515 Google Scholar
21. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Gain enhancement of millimetre wave antenna with metamaterial loading," International Symposium on Antennas and Propag., Phuket, Thailand, 2017. Google Scholar
22. Yeo, J. and J.-I. Lee, "Broadband flat gain enhancement of planar double dipole quasi-yagi antenna using multiple directors," Progress In Electromagnetics Research C, Vol. 65, 1-9, 2016.
doi:10.2528/PIERC16042105 Google Scholar
23. Kesornpatumanun, V., P. Boonek, W. Silabut, N. Homsup, and W. Kuhirun, "High directivity and gain enhancement for small planar dipole antenna at 11 GHz using symmetrical pyramidal block based on epsilon negative medium," International Scholarly and Scientific Research and Innovation, Vol. 8, No. 5, 817-820, 2014. Google Scholar