Vol. 89
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-30
Non-Reciprocal Antenna Array Based on Magnetized Graphene for THz Applications Using the Iterative Method
By
Progress In Electromagnetics Research M, Vol. 89, 93-100, 2020
Abstract
An effective and precise approach to the Wave Concept Iterative Process method modeling of magnetized graphene sheet as an anisotropic conductive surface is used to analyze the anisotropy of magnetostatically biased graphene and for studying an electrically doped magnetically biased graphene non-reciprocal antenna array for THz applications. The tuning of the performance of the array antenna is possible by varying the magnetic field and the chemical potential of graphene material. The return loss value decreases by increasing the magnetostatic bias and increases when the chemical potential increases.
Citation
Aymen Hlali, Zied Houaneb, and Hassen Zairi, "Non-Reciprocal Antenna Array Based on Magnetized Graphene for THz Applications Using the Iterative Method," Progress In Electromagnetics Research M, Vol. 89, 93-100, 2020.
doi:10.2528/PIERM19112203
References

1. Crassee, I., J. Levallois, A. L.Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. D. Marel, and A. B. Kuzmenko, "Giant Faraday rotation in single-and multilayer graphene," Nature Physics, Vol. 7, 48-51, 2011.
doi:10.1038/nphys1816

2. Sounas, D. L. and C. Caloz, "Electromagnetic nonreciprocity and gyrotropy of graphene," Applied Physics Letters, Vol. 98, 021911, 2011.
doi:10.1063/1.3543633

3. Sounas, D. L. and C. Caloz, "Edge surface modes in magnetically biased chemically doped graphene strips," Applied Physics Letters, Vol. 99, 231902, 2011.
doi:10.1063/1.3665944

4. Sounas, D. L. and C. Caloz, "Gyrotropy and nonreciprocity of graphene for microwave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 901-914, 2012.
doi:10.1109/TMTT.2011.2182205

5. Serrano, D. C., J. S. G. Diaz, D. L. Sounas, Y. Hadad, A. A. Melcon, and A. Alu, "Nonreciprocal graphene devices and antennas based on spatiotemporal modulation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1529-1532, 2016.
doi:10.1109/LAWP.2015.2510818

6. Zhu, B., G. Ren, Y. Gao, B. Wu, Q. Wang, C. Wan, and S. Jian, "Graphene plasmons isolator based on non-reciprocal coupling," Optics Express, Vol. 23, 16071-16083, 2015.
doi:10.1364/OE.23.016071

7. Tamagnone, M., C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, "Near optimal graphene terahertz non-reciprocal isolator," Nature Communications, Vol. 7, 11216(1-6), 2016.
doi:10.1038/ncomms11216

8. Serrano, D. C., J. S. G. Diaz, A. Alu, and A. A. Melcon, "Electrically and magnetically biased graphene-based cylindrical waveguides: analysis and applications as reconfigurable antennas," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 951-960, 2015.
doi:10.1109/TTHZ.2015.2472985

9. Chamanara, N., D. Sounas, and C. Caloz, "Non-reciprocal magnetoplasmon graphene coupler," Optics Express, Vol. 21, 11248-11256, 2013.
doi:10.1364/OE.21.011248

10. Tamagnone, M., A. Fallahi, J. R. Mosig, and J. P. Carrier, "Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices," Nature Photonics, Vol. 8, 556-563, 2014.
doi:10.1038/nphoton.2014.109

11. Feizi, M., V. Nayyeri, and O. M. Ramahi, "Modeling magnetized graphene in the finite-difference time-domain method using an anisotropic surface boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 66, 233-241, 2018.
doi:10.1109/TAP.2017.2768081

12. Amanatiadis, S. A., N. V. Kantartzis, T. Ohtani, and Y. Kanai, "Precise modeling of magneticallybiased graphene through a recursive convolutional FDTD method," IEEE Transactions on Magnetics, Vol. 54, 233-241, 2018.
doi:10.1109/TMAG.2017.2749558

13. Wang, X. H., W. Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
doi:10.1109/LAWP.2013.2281053

14. Cao, Y. S., P. Li, L. J. Jiang, and A. E. Ruehli, "The derived equivalent circuit model for magnetized anisotropic graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 65, 948-953, 2017.
doi:10.1109/TAP.2016.2633222

15. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 81, 1-6, 2016.
doi:10.1155/2016/7478621

16. Azizi, M., M. Boussouis, H. Aubert, and H. Baudrand, "A three-dimensional analysis of planar discontinuities by an iterative method," Microwave and Optical Technology Letters, Vol. 13, 372-376, 1996.
doi:10.1002/(SICI)1098-2760(19961220)13:6<372::AID-MOP16>3.0.CO;2-5

17. N’gongo, R. S. and H. Baudrand, "A new approach for microstrip active antennas using modal FFT algorithm," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1700-1703, 1999.

18. Gharsallah, A., A. Gharbi, and H. Baudrand, "Efficient analysis of multiport passive circuits using the iterative technique," Electromagnetics, Vol. 81, 73-84, 2001.
doi:10.1080/02726340151087996

19. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 153, 109-162, 2006.
doi:10.1049/ip-map:20050028

20. Mami, A., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of microwave components and circuits using the iterative method," International Journal of RF and Microwave, Vol. 81, 404-414, 2004.
doi:10.1002/mmce.20027

21. Aizi, M., H. Aubert, and H. Baudrand, "A new iterative method for scattering problems," Microwave Conference, Vol. 1, 255-258, 1995.

22. Houaneb, Z., H. Zairi A. Gharsallah, and H. Baudrand, "Modeling of cylindrical resonators by wave concept iterative process in cylindrical coordinates," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 24, 123-131, 2011.
doi:10.1002/jnm.765

23. Hlali, A., Z. Houaneb, and H. Zairi, "Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz band using an improved Wave Concept Iterative Process method," International Journal for Light and Electron Optics, Vol. 181, 423-431, 2018.
doi:10.1016/j.ijleo.2018.12.091

24. Hlali, A., Z. Houaneb, and H. Zairi, "Dual-band reconfigurable graphene-based patch antenna in terahertz band: Design, analysis and modeling using WCIP method," Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018.
doi:10.2528/PIERC18080107

25. Hlali, A., Z. Houaneb, and H. Zairi, "Effective modeling of magnetized graphene by the wave concept iterative process method using boundary conditions," Progress In Electromagnetics Research C, Vol. 89, 121-132, 2019.
doi:10.2528/PIERC18111514

26. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, Vol. 103, 101-109, 2008.

27. Lovat, G., "Equivalent circuit for electromagnetic interaction and transmission through graphene sheets," IEEE Transactions on Electromagnetic, Vol. 54, 101-109, 2012.
doi:10.1109/TEMC.2011.2169072

28. Li, P. and L. J. Jiang, "Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE," IEEE Transactions on Antennas and Propagation, Vol. 63, 4458-4467, 2015.
doi:10.1109/TAP.2015.2456977

29. Guo, Y., T. Zhang, W. Yin, and X. Wang, "Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 358-367, 2015.
doi:10.1109/TTHZ.2015.2399105