1. Fu, K., D. Moreno, M. Yang, and K. L.Wood, "Bio-inspired design: An overview investigating open questions from the broader field of design-by-analogy," J. Mech. Des., Vol. 136, No. 11, 111102, 2014.
doi:10.1115/1.4028289
2. Hashemi, F. H. and U. Lindemann, A Practical Guide to Bio-inspired Design, Springer, 2019.
doi:10.1007/978-3-662-57684-7
3. French, M., Invention and Evolution: Design in Nature and Engineering, Cambridge University Press, 1988.
4. Benyus, J., Biomimicry: Innovation Inspired by Nature, Perennial, 1997.
5. Blacklow, S. O., J. Li, B. R. Freedman, M. Zeidi, C. Chen, and D. J. Mooney, "Bioinspired mechanically active adhesive dressings to accelerate wound closure," Science Advances, Vol. 5, No. 7, 2019.
doi:10.1126/sciadv.aaw3963
6. Cafferty, B. J., A. S. Ten, M. J. Fink, S.Morey, D. J. Preston, M. Mrksich, and G. M.Whitesides, "Storage of information using small organic molecules," ACS Cent. Sci., Vol. 5, 911-916, 2019.
7. Shields, IV, C. W., L. L. Wang, and M. A. Evans, "Materials for immunotherapy," Adv. Materials, 2019.
8. Silva-Candala, A. D., T. Brownb, V. Krishnanb, I. Lopez-Loureiroa, P. ´ Avila-G´omeza, A. Pusulurib, A. Perez-Dıazc, C. Correa-Paza, P. Hervellaa, J. Castilloa, S. Mitragotrib, and F. Camposa, "Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions," Journal of Controlled Release, Vol. 309, 94-105, 2019.
9. Shi, N., C. C. Tsai, F. Camino, and G. Bernard, "Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants," Science, Vol. 349, No. 6245, 298-301, 2015.
10. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773, 1996.
11. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
12. Smith, D. R., J. B. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
13. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
14. Wongkasem, N. and M. Ruiz, "Multi-negative index band metamaterial-inspired microfluidic sensors," Progress In Electromagnetics Research C, Vol. 94, 29-44, 2019.
15. Li, A., X. Zhao, G. Duan, and S. Anderson, "Diatom frustule-inspired metamaterial absorbers: The effect of hierarchical pattern arrays," Adv. Functional Materials, Vol. 29, No. 22, 2019.
16. Kim, T., J. Y. Bae, N. Lee, and H. H. Cho, "Metamaterials: Hierarchical metamaterials for multispectral camouflage of infrared and microwaves," Adv. Functional Materials, Vol. 29, No. 10, 2019.
17. Krushynska, A. and F. Bosia, "Fractal and bio-inspired labyrinthine acoustic metamaterials," Journal of the Acoustical Society of America, Vol. 143, No. 1714, 2018.
18. Zhao, L. and S. Zhou, "Compact acoustic rainbow trapping in a bioinspired spiral array of graded locally resonant metamaterials," Sensors, Vol. 19, No. 4, 788, 2019.
19. Miniaci, M., A. Krushynska, A. S. Gliozzi, N. Kherraz, F. Bosia, and N. M. Pugno, "Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials," Phys. Rev. Applied, Vol. 10, 024012, 2018.
20. Lakhtakia, A., D. E. Wolfe, M. W. Horn, J. Mazurowski, A. Burger, and P. P. Banerjee, "Bioinspired multicontrollable metasurfaces and metamaterials for terahertz applications," Proc. SPIE, 10162, Bioinspiration, Biomimetics, and Bioreplication, 101620V, April 17, 2017.
21. Zhao, Y., Bio-inspired nanophotonics: Manipulating light at the nanoscale with plasmonic metamaterials, Ph.D. Dissertation, UT Austin, USA, 2013.
22. Matra, K. and N. Wongkasem, "Left-handed chiral isotropic metamaterials: Analysis and detailed numerical study," J. Opt. A: Pure Appl. Opt., Vol. 11, 074011, 2009.
23. Panpradit, W., A. Sonsilphong, C. Soemphol, and N. Wongkasem, "High negative refractive index in chiral metamaterials," J. Opt., Vol. 14, 075101, 2012.
24. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," J. Opt., Vol. 14, 105103, 2012.
25. Cui, Y., L. Kang, S. Lan, S. Rodrigues, and W. Cai, "Giant chiral optical response from a twisted-arc metamaterial," Nano Lett., Vol. 14, No. 2, 1021-1025, 2014.
26. Zhou, J., D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, "Terahertz chiral metamaterials with giant and dynamically tunable optical activity," Phys. Rev. B, Vol. 86, No. 3, 035448, 2012.
27. Sonsilphong, A., P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, and N. Wongkasem, "Flexible bi-layer terahertz chiral metamaterials," J. Opt., Vol. 17, 1-6, 2015.
28. Wongkasem, N., C. Kamtongdee, A. Akyurtlu, and K. Marx, "Artificial multiple helices: EM and polarization properties," J. Opt., Vol. 12, 075102, 2010.
29. Sonsilphong, A. and N. Wongkasem, "Low loss circular birefringence in artificial triple helix," Progress In Electromagnetics Research M, Vol. 29, 267-278, 2013.
30. Sonsilphong, A. and N. Wongkasem, "Mid-infrared circular polarization switching in helical metamaterials," J. Opt., Vol. 18, 115102, 2016.
31. Papadakis, G. T., D. Fleischman, A. Davoyan, P. Yeh, and H. A. Atwater, "Optical magnetism in planar metamaterial heterostructures," Nature Communications, Vol. 9, 296, 2018.
32. Zigoneanu, L., B. Popa, and S. A. Cummer, "Three-dimensional broadband omnidirectional acoustic ground cloak," Nature Materials, Vol. 13, 352-355, 2014.
33. Cummer, S. A., J. Christensen, and A. Alu, "Controlling sound with acoustic metamaterials," Nature Reviews Materials, Vol. 1, 16001, 2016.
34. Hou, X. and V. V. Silberschmidt, "Metamaterials with negative poisson’s ratio: A review of mechanical properties and deformation mechanisms mechanics of advances materials," Analysis of Properties and Performance, 155-179, 2015.
35. Babaee, S., J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K. Bertoldi, "3D soft metamaterials with negative poisson’s ratio," Adv. Material, 1-6, 2013.
36. Li, X., L. Gao, W. Zhou, Y. Wang, and Y. Lu, "Novel 2D metamaterials negative poisson’s ratio and negative thermal expansion," Extreme Mechanics Letters, Vol. 30, 100498, 2019.
37. https://hiscreation.com/node/1080 Accessed on December 13, 2019.
38. Wongkasem, N., "Identification of material parameters in complex metamaterials by group theory," Technology and Innovation for Sustainable Development Conference, (TISD 2008), Khon Kaen, Thailand, 2008.
39. Mayer, J. R., "Die Organische Bewegung in ithren Zusammenhang mit dem Stoffwechserl,", [The Organic Motion in its Relation to Metabolism], Heibronn:n.p., 1864.
40. Govindjee, E. R., Photosynthesis, Wiley, 1969.
41. Whitmarsh, J. and E. R. Govindjee, "The photosynthetic process,", https://www.life.illinois.edu/gov-indjee/paper/gov.html accessed on December 14, 2019.
42. Streitweiser and Heathcock Introduction to Organic Chemistry, 2, MacMillan, 1981.
43. Stryer, L., "Biochemistry," W. H. Freeman and Co., 1975.
44. Moore, R., W. C. Dennis, K. R. Stern, and D. Vodopich, "Botany: Plant Diversity," Vol. 2, Wm. C. Brown, 1995.
45. Khan Academy Light and photosynthetic pigments, https://www.khanacademy.org/science/biology/photosynthesis-in-plants/the-light-dependent-reactions-of-photosynthesis/a/light-andphotosynth-etic-pigments, Accessed on December 14, 2019.
46. Arritt, B. J., D. R. Smith, and T. Khraishi, "Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters," J. of Applied Science, Vol. 109, 073512, 2011.
47. Wongkasem, N., A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, "Development of chiral negative refractive index metamaterials for the terahertz frequency regime," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 11, 3052-3062, 2007.
48. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband THz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
49. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.
50. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.
51. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
52. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediumswith negative phase velocity in isotropic chiral mediums," Microw. Opt. Tech. Lett., Vol. 45, No. 2, 120-121, 2005.
53. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative and positive phase-velocity propagation in an isotropic chiral medium," Microw. Opt. Tech. Lett., Vol. 49, No. 6, 1245-1246, 2007.
54. Wongkasem, N. and A. Akyurtlu, "Light splitting effects in chiral metamaterials," J. of Optics, Vol. 12, 035101, 2010.