Vol. 100
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-03-30
Chlorophyll-Inspired Tunable Metamaterials with Multi-Negative Refractive Index Bands: the Porphyrin Ring and Hydrophobic Tail Effect
By
Progress In Electromagnetics Research C, Vol. 100, 219-232, 2020
Abstract
Tunable negative electromagnetic properties: permittivity, permeability, and refractive index, in mimic Chlorophyll metamaterial structures in the X- and Ku-band regimes are theoretically and numerically demonstrated. A very broad negative permeability covering the majority of the X- and Ku bands, from 8 GHz to 16 GHz, is observed, while five negative permittivity bands are found within the same range. The two aforementioned properties result in a broad, greater than 25% bandwidth, low-loss negative-refractive index transmission band. These negative electromagnetic properties can be effectively tailored within the low-loss multi-transmission and the high-loss multi-absorption bands in the operating frequency range by modifying the structure's tiller part or the artificial hydrophobic or Phytol tail. By focusing either on the transmission or the absorption bands, these passive always-on bio-inspired metamaterials could be utilized in microelectronic, communication and photonic, and optic devices.
Citation
Nantakan Wongkasem, "Chlorophyll-Inspired Tunable Metamaterials with Multi-Negative Refractive Index Bands: the Porphyrin Ring and Hydrophobic Tail Effect," Progress In Electromagnetics Research C, Vol. 100, 219-232, 2020.
doi:10.2528/PIERC20011102
References

1. Fu, K., D. Moreno, M. Yang, and K. L.Wood, "Bio-inspired design: An overview investigating open questions from the broader field of design-by-analogy," J. Mech. Des., Vol. 136, No. 11, 111102, 2014.
doi:10.1115/1.4028289        Google Scholar

2. Hashemi, F. H. and U. Lindemann, A Practical Guide to Bio-inspired Design, Springer, 2019.
doi:10.1007/978-3-662-57684-7

3. French, M., Invention and Evolution: Design in Nature and Engineering, Cambridge University Press, 1988.

4. Benyus, J., Biomimicry: Innovation Inspired by Nature, Perennial, 1997.

5. Blacklow, S. O., J. Li, B. R. Freedman, M. Zeidi, C. Chen, and D. J. Mooney, "Bioinspired mechanically active adhesive dressings to accelerate wound closure," Science Advances, Vol. 5, No. 7, 2019.
doi:10.1126/sciadv.aaw3963        Google Scholar

6. Cafferty, B. J., A. S. Ten, M. J. Fink, S.Morey, D. J. Preston, M. Mrksich, and G. M.Whitesides, "Storage of information using small organic molecules," ACS Cent. Sci., Vol. 5, 911-916, 2019.        Google Scholar

7. Shields, IV, C. W., L. L. Wang, and M. A. Evans, "Materials for immunotherapy," Adv. Materials, 2019.        Google Scholar

8. Silva-Candala, A. D., T. Brownb, V. Krishnanb, I. Lopez-Loureiroa, P. ´ Avila-G´omeza, A. Pusulurib, A. Perez-Dıazc, C. Correa-Paza, P. Hervellaa, J. Castilloa, S. Mitragotrib, and F. Camposa, "Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions," Journal of Controlled Release, Vol. 309, 94-105, 2019.        Google Scholar

9. Shi, N., C. C. Tsai, F. Camino, and G. Bernard, "Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in saharan silver ants," Science, Vol. 349, No. 6245, 298-301, 2015.        Google Scholar

10. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773, 1996.        Google Scholar

11. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.        Google Scholar

12. Smith, D. R., J. B. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.        Google Scholar

13. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.        Google Scholar

14. Wongkasem, N. and M. Ruiz, "Multi-negative index band metamaterial-inspired microfluidic sensors," Progress In Electromagnetics Research C, Vol. 94, 29-44, 2019.        Google Scholar

15. Li, A., X. Zhao, G. Duan, and S. Anderson, "Diatom frustule-inspired metamaterial absorbers: The effect of hierarchical pattern arrays," Adv. Functional Materials, Vol. 29, No. 22, 2019.        Google Scholar

16. Kim, T., J. Y. Bae, N. Lee, and H. H. Cho, "Metamaterials: Hierarchical metamaterials for multispectral camouflage of infrared and microwaves," Adv. Functional Materials, Vol. 29, No. 10, 2019.        Google Scholar

17. Krushynska, A. and F. Bosia, "Fractal and bio-inspired labyrinthine acoustic metamaterials," Journal of the Acoustical Society of America, Vol. 143, No. 1714, 2018.        Google Scholar

18. Zhao, L. and S. Zhou, "Compact acoustic rainbow trapping in a bioinspired spiral array of graded locally resonant metamaterials," Sensors, Vol. 19, No. 4, 788, 2019.        Google Scholar

19. Miniaci, M., A. Krushynska, A. S. Gliozzi, N. Kherraz, F. Bosia, and N. M. Pugno, "Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials," Phys. Rev. Applied, Vol. 10, 024012, 2018.        Google Scholar

20. Lakhtakia, A., D. E. Wolfe, M. W. Horn, J. Mazurowski, A. Burger, and P. P. Banerjee, "Bioinspired multicontrollable metasurfaces and metamaterials for terahertz applications," Proc. SPIE, 10162, Bioinspiration, Biomimetics, and Bioreplication, 101620V, April 17, 2017.        Google Scholar

21. Zhao, Y., Bio-inspired nanophotonics: Manipulating light at the nanoscale with plasmonic metamaterials, Ph.D. Dissertation, UT Austin, USA, 2013.

22. Matra, K. and N. Wongkasem, "Left-handed chiral isotropic metamaterials: Analysis and detailed numerical study," J. Opt. A: Pure Appl. Opt., Vol. 11, 074011, 2009.        Google Scholar

23. Panpradit, W., A. Sonsilphong, C. Soemphol, and N. Wongkasem, "High negative refractive index in chiral metamaterials," J. Opt., Vol. 14, 075101, 2012.        Google Scholar

24. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," J. Opt., Vol. 14, 105103, 2012.        Google Scholar

25. Cui, Y., L. Kang, S. Lan, S. Rodrigues, and W. Cai, "Giant chiral optical response from a twisted-arc metamaterial," Nano Lett., Vol. 14, No. 2, 1021-1025, 2014.        Google Scholar

26. Zhou, J., D. R. Chowdhury, R. Zhao, A. K. Azad, H. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, "Terahertz chiral metamaterials with giant and dynamically tunable optical activity," Phys. Rev. B, Vol. 86, No. 3, 035448, 2012.        Google Scholar

27. Sonsilphong, A., P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, and N. Wongkasem, "Flexible bi-layer terahertz chiral metamaterials," J. Opt., Vol. 17, 1-6, 2015.        Google Scholar

28. Wongkasem, N., C. Kamtongdee, A. Akyurtlu, and K. Marx, "Artificial multiple helices: EM and polarization properties," J. Opt., Vol. 12, 075102, 2010.        Google Scholar

29. Sonsilphong, A. and N. Wongkasem, "Low loss circular birefringence in artificial triple helix," Progress In Electromagnetics Research M, Vol. 29, 267-278, 2013.        Google Scholar

30. Sonsilphong, A. and N. Wongkasem, "Mid-infrared circular polarization switching in helical metamaterials," J. Opt., Vol. 18, 115102, 2016.        Google Scholar

31. Papadakis, G. T., D. Fleischman, A. Davoyan, P. Yeh, and H. A. Atwater, "Optical magnetism in planar metamaterial heterostructures," Nature Communications, Vol. 9, 296, 2018.        Google Scholar

32. Zigoneanu, L., B. Popa, and S. A. Cummer, "Three-dimensional broadband omnidirectional acoustic ground cloak," Nature Materials, Vol. 13, 352-355, 2014.        Google Scholar

33. Cummer, S. A., J. Christensen, and A. Alu, "Controlling sound with acoustic metamaterials," Nature Reviews Materials, Vol. 1, 16001, 2016.        Google Scholar

34. Hou, X. and V. V. Silberschmidt, "Metamaterials with negative poisson’s ratio: A review of mechanical properties and deformation mechanisms mechanics of advances materials," Analysis of Properties and Performance, 155-179, 2015.        Google Scholar

35. Babaee, S., J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K. Bertoldi, "3D soft metamaterials with negative poisson’s ratio," Adv. Material, 1-6, 2013.        Google Scholar

36. Li, X., L. Gao, W. Zhou, Y. Wang, and Y. Lu, "Novel 2D metamaterials negative poisson’s ratio and negative thermal expansion," Extreme Mechanics Letters, Vol. 30, 100498, 2019.        Google Scholar

37. https://hiscreation.com/node/1080 Accessed on December 13, 2019.

38. Wongkasem, N., "Identification of material parameters in complex metamaterials by group theory," Technology and Innovation for Sustainable Development Conference, (TISD 2008), Khon Kaen, Thailand, 2008.        Google Scholar

39. Mayer, J. R., "Die Organische Bewegung in ithren Zusammenhang mit dem Stoffwechserl,", [The Organic Motion in its Relation to Metabolism], Heibronn:n.p., 1864.        Google Scholar

40. Govindjee, E. R., Photosynthesis, Wiley, 1969.

41. Whitmarsh, J. and E. R. Govindjee, "The photosynthetic process,", https://www.life.illinois.edu/gov-indjee/paper/gov.html accessed on December 14, 2019.        Google Scholar

42. Streitweiser and Heathcock Introduction to Organic Chemistry, 2, MacMillan, 1981.

43. Stryer, L., "Biochemistry," W. H. Freeman and Co., 1975.        Google Scholar

44. Moore, R., W. C. Dennis, K. R. Stern, and D. Vodopich, "Botany: Plant Diversity," Vol. 2, Wm. C. Brown, 1995.        Google Scholar

45. Khan Academy Light and photosynthetic pigments, https://www.khanacademy.org/science/biology/photosynthesis-in-plants/the-light-dependent-reactions-of-photosynthesis/a/light-andphotosynth-etic-pigments, Accessed on December 14, 2019.        Google Scholar

46. Arritt, B. J., D. R. Smith, and T. Khraishi, "Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters," J. of Applied Science, Vol. 109, 073512, 2011.        Google Scholar

47. Wongkasem, N., A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, "Development of chiral negative refractive index metamaterials for the terahertz frequency regime," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 11, 3052-3062, 2007.        Google Scholar

48. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband THz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.        Google Scholar

49. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.        Google Scholar

50. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.        Google Scholar

51. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.        Google Scholar

52. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediumswith negative phase velocity in isotropic chiral mediums," Microw. Opt. Tech. Lett., Vol. 45, No. 2, 120-121, 2005.        Google Scholar

53. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative and positive phase-velocity propagation in an isotropic chiral medium," Microw. Opt. Tech. Lett., Vol. 49, No. 6, 1245-1246, 2007.        Google Scholar

54. Wongkasem, N. and A. Akyurtlu, "Light splitting effects in chiral metamaterials," J. of Optics, Vol. 12, 035101, 2010.        Google Scholar