1. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181
2. Paschotta, R., Article on “Bragg Mirrors” in the Encyclopedia of Laser Physics and Technology, 1st Ed., Wiley-VCH, 2008, ISBN 978-3-527-40828-3.
3. Amotchkina, T. V., "Analytical estimations for the reference wavelength reflectance and width of high reflection zone of two-material periodic multilayers," Applied Optics, Vol. 52, No. 19, 4590-4595, 2013.
doi:10.1364/AO.52.004590 Google Scholar
4. Hendrix, K. D., C. Hulse, G. J. Ockenfuss, and R. Sargent, "Demonstration of narrowband notch and multi-notch filters," Proc. SPIE7067, ID 706702, 2008.
doi:10.1117/12.795498 Google Scholar
5. Hehl, K., J. Bischoff, U. Mohaupt, et al. "High-efficiency dielectric reflection gratings: Design, fabrication, and analysis," Applied Optics, Vol. 38, No. 30, 6257-6271, 1999.
doi:10.1364/AO.38.006257 Google Scholar
6. Berger, C., A. Lesnik, T. Zettler, et al. "Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping," Journal of Crystal Growth, Vol. 440, 6-12, 2016.
doi:10.1016/j.jcrysgro.2016.01.027 Google Scholar
7. Guo, C., M. Kong, D. Lin, and B. Li, "Fluoride coatings for vacuum ultraviolet reflection filters," Applied Optics, Vol. 54, No. 35, 10498-10503, 2015.
doi:10.1364/AO.54.010498 Google Scholar
8. Leem, J. W., X. Guan, and J. S. Yu, "Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications," Optics Express, Vol. 22, No. 15, 18519-18526, 2014.
doi:10.1364/OE.22.018519 Google Scholar
9. Zhang, J., Y. Xie, X. Cheng, H. Jiao, and Z. Wang, "Thin-film thickness-modulated designs for optical minus filter," Applied Optics, Vol. 52, No. 23, 5788-5793, 2013.
doi:10.1364/AO.52.005788 Google Scholar
10. Wang, X., H. Masumoto, Y. Someno, L. Chen, and T. Hirai, "Stepwise graded refractive-index profiles for design of a narrow-bandpass filter," Applied Optics, Vol. 40, No. 22, 3746-3752, 2001.
doi:10.1364/AO.40.003746 Google Scholar
11. De Vre, R. and L. Hesselink, "Diffraction analysis of layered structures of photorefractive gratings," Journal of Optical Society of America A, Vol. 13, No. 2, 285-295, 1996.
doi:10.1364/JOSAA.13.000285 Google Scholar
12. Petrov, V. M., S. Lichtenberg, J. Petter, and T. Tschudi, "Control of the optical transfer function by phase-shift keying of a holographic Bragg grating," Optics Communications, Vol. 229, 131-139, 2004.
doi:10.1016/j.optcom.2003.10.049 Google Scholar
13. Macleod, H. A., Thin-film Optical Filters, 3rd Ed., Institute of Physics Publishing, 2001.
doi:10.1201/9781420033236
14. Muller, R., M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," Journal of Physics D: Applied Physic, Vol. 27, 241-246, 1994.
doi:10.1088/0022-3727/27/2/010 Google Scholar
15. Muller, R., J. V. Alvarez-Bravo, L. Arizmendi, and J. M. Cabrera, "Tuning of photorefractive interference filters in LiNbO3," Journal of Physics D: Applied Physic, Vol. 27, 1628-1632, 1994.
doi:10.1088/0022-3727/27/8/007 Google Scholar
16. Herve, D., M. Chauvet, J. E. Viallet, and M. J. Chawki, "First tunable narrowband 1.55 μm optical drop filter using a dynamic photorefractive grating in iron doped indium phosphide," Electronics Letters, Vol. 30, No. 22, 1883-1884, 1994.
doi:10.1049/el:19941244 Google Scholar
17. Hukriede, J., D. Runde, and D. Kip, "Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides," Journal of Physics D: Applied Physics, Vol. 36, R1-R16, 2003.
doi:10.1088/0022-3727/36/3/201 Google Scholar
18. Glebov, A. L., O. Mokhuna, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, "Volume Bragg gratings as ultra-narrow and multiband optical filters," Proc. of SPIE, Vol. 8428, ID 84280C, 2012.
doi:10.1117/12.923575 Google Scholar
19. Sutherland, R. L., V. P. Tondiglia, L. V. Natarajan, et al. "Liquid crystal Bragg gratings: Dynamic optical elements for spatial light modulators," Proc. of SPIE, Vol. 6487, ID 64870V, 2007.
doi:10.1117/12.710829 Google Scholar
20. Thaxter, J. B., "Electrical control of holographic storage in Strontium-Barium Niobate," Applied Physics Letters, Vol. 15, No. 7, 210-212, 1969.
doi:10.1063/1.1652971 Google Scholar
21. Thaxter, J. B. and M. Kestigian, "Unique properties of SBN and their use in a layered optical memory," Applied Optics, Vol. 13, No. 4, 913-924, 1974.
doi:10.1364/AO.13.000913 Google Scholar
22. Voronov, V. V., E. K. Gulanyan, I. R. Dorosh, et al. "Photoelectric and photorefractive properties of cerium-doped barium strontium niobate crystals," Soviet Journal of Quantum Electronics, Vol. 9, No. 9, 1172-1175, 1979.
doi:10.1070/QE1979v009n09ABEH009478 Google Scholar
23. Ballman, A. A. and H. Brown, "The growth and properties of strontium barium metaniobate, Sr1−xBaxNb2O6, a tungsten bronze ferroelectric," Journal of Crystal Growth, Vol. 1, No. 5, 311-314, 1967.
doi:10.1016/0022-0248(67)90038-3 Google Scholar
24. Neurgaonkar, R. R., W. K. Cory, J. R. Oliver, M. D. Ewbank, and W. F. Hall, "Development and modification of photorefractive properties in the tungsten bronze family crystals," Optical Engineering, Vol. 26, No. 5, 392-405, 1987.
doi:10.1117/12.7974088 Google Scholar
25. Dorosh, I. R., Y. S. Kuzminov, N. M. Polozkov, et al. "Barium-strontium niobate crystals for optical information recording," Physica Status Solidi (A), Vol. 65, No. 2, 513-522, 1981.
doi:10.1002/pssa.2210650214 Google Scholar
26. Thaxter, J. B. and M. Kestigian, "Unique properties of SBN and their use in a layered optical memory," Applied Optics, Vol. 13, No. 4, 913-924, 1974.
doi:10.1364/AO.13.000913 Google Scholar
27. Golmohammadi, S. and A. Rostami, "Optical filters using optical multi-layer structures for optical communication systems," Fiber Integrated Optics, Vol. 29, No. 3, 209-224, 2010.
doi:10.1080/01468030.2010.485294 Google Scholar
28. Smirnov, V., J. Lumeau, S. Mokhov, B. Y. Zeldovich, and L. B. Glebov, "Ultranarrow bandwidth moire reflecting Bragg gratings recorded in photo-thermo-refractive glass," Optics Letters, Vol. 35, No. 4, 592-594, 2010.
doi:10.1364/OL.35.000592 Google Scholar
29. Yeh, P., A. Yariv, and C.-S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, No. 4, 423-438, 1977.
doi:10.1364/JOSA.67.000423 Google Scholar
30. Popov, K. V., J. A. Dobrowolski, A. V. Tikhonravov, and B. T. Sullivan, "Broadband high-reflection multilayer coatings at oblique angles of incidence," Applied Optics, Vol. 36, No. 10, 2139-2151, 1997.
doi:10.1364/AO.36.002139 Google Scholar
31. Eriksson, F., G. A. Johansson, H. M. Hertz, E. M. Gullikson, U. Kreissig, and J. Birch, "14.5% near-normal incidence reflectance of Cr/Sc x-ray multilayer mirrors for the water window," Optics Letters, Vol. 28, No. 24, 2494-2496, 2003.
doi:10.1364/OL.28.002494 Google Scholar
32. Boyd, R. W., "Nonlinear Optics," Academic Press, 2003. Google Scholar
33. Petrov, M. P., S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer-Verlag, 1991.
doi:10.1007/978-3-540-47056-4
34. Eichler, H. J. and A. Hermerschmidt, "Light-induced dynamic gratings and photorefraction," Photorefractive Materials and Their Applications 1, Basic Effects, 7-28, P. Gunter and J.-P. Huignard, Eds., Springer, New York, 2006. Google Scholar
35. Frejlich, J., Photorefractive Materials, Fundamental Concepts, Holographic Recording and Materials Characterization, Wiley-Interscience, 2007.
36. Yariv, A. and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, 2007.
37. Denz, C., M. Schwab, and C. Weilnau, Transverse-Pattern Formation in Photorefractive Optics, Springer-Verlag, 2003.
doi:10.1007/b13583
38. Saleh, B. E. A. and M. C. Teich, Fundamental of Photonics, 2nd Ed., Wiley-Interscience, 2007.
39. Kashyap, R., Fiber Bragg Gratings, 2nd Ed., Academic Press, 2010.
40. Tovar, A. A. and L. W. Casperson, "Generalized Sylvester theorems for periodic applications in matrix optics," J. Opt. Soc. Am. A, Vol. 12, No. 3, 578-590, 1995.
doi:10.1364/JOSAA.12.000578 Google Scholar
41. Kogelnik, H., "Coupled wave theory for thick Hologram Gratings," The Bell System Technical Journal, Vol. 48, No. 9, 2909-2947, 1969.
doi:10.1002/j.1538-7305.1969.tb01198.x Google Scholar