1. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, 2017.
2. Avser, B., J. Pierro, and G. M. Rebeiz, "Random feeding networks for reducing the number of phase shifters in limited-scan arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4648-4658, 2016.
doi:10.1109/TAP.2016.2600861 Google Scholar
3. Akbar, F. and A. Mortazawi, "Scalable phased array architectures with a reduced number of tunable phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 9, 3428-3434, 2017.
doi:10.1109/TMTT.2017.2657509 Google Scholar
4. Yan, F., P. Yang, M. Gao, X. Cui, and F. Yang, "Grating lobe reduction in phased arrays with regular subarray architecture," 2017 IEEE Antennas Propag. Soc. Int. Symp. Proc., Vol. 2017-Janua, No. 3, 1597-1598, 2017. Google Scholar
5. Barott, W. C. and P. G. Steffes, "Grating lobe reduction in aperiodic linear arrays of physically large antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 406-408, 2009.
doi:10.1109/LAWP.2008.2005364 Google Scholar
6. Arora, R. K. and N. C. V. Krishnamacharyulu, "Synthesis of unequally spaced arrays using dynamic programming," IEEE Trans. Antennas Propag., Vol. 16, No. 5, 593-595, 1968.
doi:10.1109/TAP.1968.1139250 Google Scholar
7. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361 Google Scholar
8. Sanchez-Gomez, J., D. H. Covarrubias, and M. A. Panduro, "A synthesis of unequally spaced antenna arrays using legendre functions," Progress In Electromagnetics Research M, Vol. 7, 57-69, January 2009.
doi:10.2528/PIERM09032305 Google Scholar
9. Mahmoud, K. R., "Synthesis of unequally-spaced linear array using modified central force optimisation algorithm," IET Microwaves, Antennas Propag., Vol. 10, No. 10, 1011-1021, 2016.
doi:10.1049/iet-map.2015.0801 Google Scholar
10. Haupt, R. L., "Reducing grating lobes due to subarray amplitude tapering," IEEE Antennas Propag. Soc. AP-S Int. Symp., No. 8, 119-122, 1985. Google Scholar
11. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1207-1210, 2007.
doi:10.1109/TAP.2007.893406 Google Scholar
12. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of minimally subarrayed linear arrays via compressed sensing method," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 3, 487-491, 2019.
doi:10.1109/LAWP.2019.2894826 Google Scholar
13. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for angular-limited scan arrays," Progress In Electromagnetics Research C, Vol. 68, 129-139, 2016.
doi:10.2528/PIERC16060602 Google Scholar
14. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for reduced sidelobes in angle-limited scan arrays," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1969-1972, 2017.
doi:10.1109/LAWP.2017.2690824 Google Scholar
15. Han, Y., C. Wan, W. Sheng, B. Tian, and H. Yang, "Array synthesis using weighted alternating projection and proximal splitting," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1006-1009, 2015.
doi:10.1109/LAWP.2015.2389804 Google Scholar
16. Dai, D., M. Yao, H. Ma, W. Jin, and F. Zhang, "An effective approach for the synthesis of uniformly excited large linear sparse array," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 3, 377-380, 2018.
doi:10.1109/LAWP.2018.2790907 Google Scholar
17. Lin, C., A. Qing, and Q. Feng, "Synthesis of unequally spaced antenna arrays by a new differential evolutionary algorithm," Int. J. Commun. Networks Inf. Secur., Vol. 1, No. 1, 20-25, 2009. Google Scholar
18. Bonabeau, E., M. Dorigo, D. de R. D. F. Marco, G. Theraulaz, and G. Theraulaz, "Swarm Intelligence: From Natural to Artificial Systems," Oxford University Press, No. 1, 1999. Google Scholar
19. Ur Rahman, S., Q. Cao, M. M. Ahmed, and H. Khalil, "Analysis of linear antenna array for minimum side lobe level, half power beamwidth, and nulls control using PSO," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 16, No. 2, 577-591, 2017.
doi:10.1590/2179-10742017v16i2913 Google Scholar
20. Mandal, D. and Y. N. Tapaswi, "Radiation pattern synthesis of linear antenna arrays by amplitude tapering using genetic algorithm," 2011 IEEE Appl. Electromagn. Conf. AEMC 2011, 2011. Google Scholar
21. Holland, J. H., "Genetic algorithms," Sci. Am., Vol. 267, No. 1, 66-73, 1992.
doi:10.1038/scientificamerican0792-66 Google Scholar
22. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of IEEE International Conference on Neural Networks IV, Vol. 1000, 33, 1995. Google Scholar
23. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969 Google Scholar
24. Smail, M. K. and H. R. E. H. Bouchekara, "Particle swarm optimization versus genetic algorithms for wiring network diagnosis,", Vol. 52, No. 3, 771-779, 2004.
doi:10.1109/TAP.2004.825102 Google Scholar
25. Cui, C. Y., Y. C. Jiao, and L. Zhang, "Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2444-2448, 2017.
doi:10.1109/LAWP.2017.2723568 Google Scholar
26. Mesloub, S. and A. Mansour, "Hybrid PSO and GA for global maximization," Int. J. Open Probl. Comput. Sci. Math. IJOPCM, Vol. 2, No. 4, 597-608, 2009. Google Scholar
27. Ru, N. and Y. Jianhua, "A GA and particle swarm optimization based hybrid algorithm," 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1047-1050, 2008. Google Scholar