Vol. 96
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-22
Boundary Value-Free Magnetic Resonance Electrical Properties Tomography Based on the Generalized Cauchy Formula with the Complex-Derivative Boundary Condition
By
Progress In Electromagnetics Research M, Vol. 96, 1-8, 2020
Abstract
Recently, magnetic-resonance-based electrical properties tomography, by which the electrical properties (EPs), namely conductivity and permittivity, of biological tissues are reconstructed, has been an active area of study. We previously proposed an explicit reconstruction method based on the Dbar equation and its explicit solution given by the generalized Cauchy formula. In this method, as in some other conventional methods, the values of EPs on the boundary of the region of interest must be specified by the Dirichlet boundary condition of the partial differential equation. However, it is difficult to know the precise values in practical situations. In this paper, we propose a novel method that reconstructs EPs without the prior information of boundary EP values by deriving a new representation formula of the solution of the Dbar equation with the complex-derivative boundary condition. Numerical simulations and phantom experiments show that the proposed method can reconstruct EPs without knowledge of the boundary EP values. Therefore, the proposed method greatly enhances the applicability of the current EPT methods to practical situations.
Citation
Motofumi Fushimi, and Takaaki Nara, "Boundary Value-Free Magnetic Resonance Electrical Properties Tomography Based on the Generalized Cauchy Formula with the Complex-Derivative Boundary Condition," Progress In Electromagnetics Research M, Vol. 96, 1-8, 2020.
doi:10.2528/PIERM20062202
References

1. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, No. 4, 547-550, 1994.

2. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093-6115, 2007.

3. Li, Z., W. Wang, Z. Cai, S. Han, S. Lin, L. He, M. Chen, D. Pan, G. Deng, S. Duan, and S. X. Xin, "Variation in the dielectric properties of freshly excised colorectal cancerous tissues at different tumor stages," Bioelectromagnetics, Vol. 38, No. 7, 522-532, 2017.

4. Zhang, X., J. Liu, and B. He, "Magnetic-resonance-based electrical properties tomography: A review," IEEE Rev. Biomed. Eng., Vol. 7, 87-96, 2014.

5. Katscher, U. and C. A. T. van den Berg, "Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications," NMR Biomed., Vol. 30, No. 8, 1-15, 2017.

6. Liu, J., Y. Wang, U. Katscher, and B. He, "Electrical properties tomography based on B1 maps in MRI: Principles, applications, and challenges," IEEE Trans. Biomed. Eng., Vol. 64, No. 11, 2515-2530, 2017.

7. Schenck, J. F., "The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds," Med. Phys., Vol. 23, No. 6, 815-850, 1996.

8. Haacke, E. M., L. S. Petropoulos, E. W. Nilges, and D. H. Wu, "Extraction of conductivity and permittivity using magnetic resonance imaging," Phys. Med. Biol., Vol. 36, No. 6, 723-734, 1991.

9. Wen, H., "Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI," Proc. SPIE Med. Imag., Vol. 5030, 471-477, San Diego, CA, USA, 2003.

10. Seo, J. K., M.-O. Kim, J. Lee, N. Choi, E. J. Woo, H. J. Kim, O. I. Kwon, and D.-H. Kim, "Error analysis of nonconstant admittivity for MR-based electric property imaging," IEEE Trans. Med. Imag., Vol. 31, No. 2, 430-437, 2012.

11. Hafalir, F. S., O. F. Oran, N. Gurler, and Y. Z. Ider, "Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)," IEEE Trans. Med. Imag., Vol. 33, No. 3, 777-793, 2014.

12. Balidemaj, E., C. A. van den Berg, J. Trinks, A. L. van Lier, A. J. Nederveen, L. J. A. Stalpers, H. Crezee, and R. F. Remis, "CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography," IEEE Trans. Med. Imag., Vol. 34, No. 9, 1788-1796, 2015.

13. Arduino, A., L. Zilberti, M. Chiampi, and O. Bottauscio, "CSI-EPT in presence of RF-shield for MR-coils," IEEE Trans. Med. Imag., Vol. 36, No. 7, 1396-1404, 2017.

14. Hampe, N., M. Herrmann, T. Amthor, C. Findeklee, M. Doneva, and U. Katscher, "Dictionarybased electric properties tomography," Magn. Reson. Med., Vol. 81, No. 1, 342-349, 2018.

15. Nara, T., T. Furuichi, and M. Fushimi, "An explicit reconstruction method for magnetic resonance electrical property tomography base on the generalized Cauchy formula," Inverse Problems, Vol. 33, No. 10, 105005, 2017.

16. Fushimi, M. and T. Nara, "A boundary-value-free reconstruction method for magnetic resonance electrical properties tomography based on the Neumann-type integral formula over a circular region," SICE JCMSI, Vol. 10, No. 6, 571-578, 2017.

17. Vekua, I., Generalized Analytic Functions, Pergamon Press, 1962.

18. Katscher, U., T. Voigt, C. Findeklee, P. Vernickel, K. Nehrke, and O. Dossel, "Determination of electric conductivity and local SAR via B1 mapping," IEEE Trans. Med. Imag., Vol. 28, No. 9, 1365-1374, 2009.

19. Gurler, N. and Y. Z. Ider, "Numerical methods and software tools for simulation, design, and resonant mode analysis of radio frequency birdcage coils used in MRI," Concepts Magn. Reson. Part B, Vol. 45B, No. 1, 13-22, 2015.

20. Shepp, L. A. and B. F. Logan, "The Fourier reconstruction of a head selection," IEEE Trans. Nucl. Sci., Vol. 21, No. 3, 21-43, 1974.

21. Insko, E. K. and L. Bolinger, "Mapping of the radiofrequency field," J. Magn. Reson., Vol. 103, No. 1, 82-85, 1993.