Vol. 97
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-28
Photonic-Crystal Substrates for Harmonic Suppression in Multi-Band Smart Devices
By
Progress In Electromagnetics Research M, Vol. 97, 35-44, 2020
Abstract
We propose photonic crystal substrates that support microstrip structures to mitigate the problem of spurious harmonics in microwave devices. The wave propagation in microwave transmission lines can be controlled by employing substrates that have modulated dielectric constant such that there exist forbidden spectral regions, which are known as bandgaps in the photonic crystal terminology. With proper selection of crystalline geometry, these bandgaps can be designed to suppress the spurious harmonics. To show the existence of bandgaps in microstrip structures, we present Bloch analysis with a bi-layered photonic crystal configuration of high and low permittivities. For a practical microstrip structure that incorporates a bi-layered photonic crystal substrate, we show suppression of spurious harmonics via circuit analysis and transmittance measurements. Furthermore, a 2.5 GHz coupled-line filter is designed on a photonic crystal substrate, and 30 dB second harmonic suppression at 5 GHz is experimentally demonstrated. With the current trend multiple device integration on single platform, the photonic crystal substrates can potentially provide the noise suppression and spurious harmonic rejection needed for microwave components occupying close proximity.
Citation
Omar F. Siddiqui, Raghied Atta, Muhammad Amin, and Hattan Abutarboush, "Photonic-Crystal Substrates for Harmonic Suppression in Multi-Band Smart Devices," Progress In Electromagnetics Research M, Vol. 97, 35-44, 2020.
doi:10.2528/PIERM20081204
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Krauss, T. F., M. Richard, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature, Vol. 383, No. 6602, 699-702, 1996.
doi:10.1038/383699a0

4. Meade, R., J. N. Winn, and J. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 1995.

5. Datta, S., Classical wave propagation in periodic and random media, Ph.D. Dissertation, Iowa State University, 1994.

6. Smith, D. R., W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184

7. Smith, D., J. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796

8. West, P. R., S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews, Vol. 4, No. 6, 795-808, 2010.
doi:10.1002/lpor.200900055

9. Wang, Z., F. Cheng, T. Winsor, and Y. Liu, "Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications," Nanotechnology, Vol. 27, No. 41, 412001, 2016.
doi:10.1088/0957-4484/27/41/412001

10. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, No. 1, 41, 2007.
doi:10.1038/nphoton.2006.49

11. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science, Vol. 317, No. 5845, 1698-1702, 2007.
doi:10.1126/science.1133268

12. Gralak, B., S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," JOSA A, Vol. 17, No. 6, 1012-1020, 2000.
doi:10.1364/JOSAA.17.001012

13. Notomi, M., "Negative refraction in photonic crystals," Optical and Quantum Electronics, Vol. 34, No. 1, 133-143, 2002.
doi:10.1023/A:1013300825612

14. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

15. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press Cambridge, UK, 2009.

16. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, 2005.
doi:10.1002/0471744751

17. Verma, R. and K. Daya, "Effect of forbidden bands of electromagnetic bandgap engineered ground plane on the response of half wave length linear microwave resonator," Journal of Applied Physics, Vol. 109, No. 8, 084505, 2011.
doi:10.1063/1.3572257

18. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

19. Liang, J. and H. D. Yang, "Microstrip patch antennas on tunable electromagnetic band-gap substrates," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1612-1617, 2009.
doi:10.1109/TAP.2009.2019928

20. Laso, M., M. Erro, D. Benito, M. Garde, T. Lopetegi, F. Falcone, and M. Sorolla, "Analysis and design of 1-d photonic bandgap microstrip structures using a fiber grating model," Microwave and Optical Technology Letters, Vol. 22, No. 4, 223-226, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<223::AID-MOP1>3.0.CO;2-X

21. Gonzalo, R., P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009

22. Kelly, P. K., L. J. Diaz, M. J. Piket-May, and I. Rumsey, "Scan blindness mitigation using photonic bandgap structure in phased arrays," Optical Devices and Methods for Microwave/Millimeter-Wave and Frontier Applications, Vol. 3464, 239-248, International Society for Optics and Photonics, 1998.

23. Zhang, L., J. Castaneda, and N. G. Alexopoulos, "Scan blindness free phased array design using pbg materials," IEEE Transactions on Antennas and Propagation, Vol. 52, 2000-2007, 2004.
doi:10.1109/TAP.2004.832516

24. Da Silva, J. L., H. D. de Andrade, A. S. Maia, H. C. Fernandes, I. B. da Silva, A. S. Sombra, and J. P. Pereira, "Performance of microstrip patch antenna due EBG/PBG arrangements insertion," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2933-2937, 2016.
doi:10.1002/mop.30181

25. Brown, E., C. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," JOSA B, Vol. 10, No. 2, 404-407, 1993.
doi:10.1364/JOSAB.10.000404

26. Kazemi, H., J. Higgins, B. Herting, H. Xin, J. B. West, and J. Hacker, "Electromagnetic bandgap waveguide (EBG) phase shifters for low cost electronically scanned antennas (ESA)," 2007 IEEE Antennas and Propagation Society International Symposium, 4357-4360, IEEE, 2007.
doi:10.1109/APS.2007.4396507

27. Hill, M. J., R. W. Ziolkowski, and J. Papapolymerou, "A high-Q reconfigurable planar EBG cavity resonator," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 6, 255-257, 2001.
doi:10.1109/7260.928930

28. Jizat, N. M., Z. Yusoff, S. K. A. Rahim, M. I. Sabran, and M. T. Islam, "Exploitation of the electromagnetic band gap (EBG) in 3-dB multi-layer branch-line coupler," 2015 IEEE 12th Malaysia International Conference on Communications (MICC), 264-269, 2015.
doi:10.1109/MICC.2015.7725445

29. Falcone, F., T. Lopetegi, and M. Sorolla, "1-d and 2-d photonic bandgap microstrip structures," Microwave and Optical Technology Letters, Vol. 22, No. 6, 411-412, 1999.
doi:10.1002/(SICI)1098-2760(19990920)22:6<411::AID-MOP13>3.0.CO;2-U

30. Goyal, A. K. and S. Pal, "Design analysis of bloch surface wave based sensor for haemoglobin concentration measurement," Applied Nanoscience, 2020.

31. Wang, R., H. Xia, D. Zhang, J. Chen, L. Zhu, Y. Wang, E. Yang, T. Zang, X. Wen, G. Zou, et al. "Bloch surface waves confined in one dimension with a single polymeric nanofibre," Nature Communications, Vol. 8, No. 1, 1-10, 2017.
doi:10.1038/s41467-016-0009-6

32. Bashiri, J., B. Rezaei, J. Barvestani, and C. Zapata-Rodrıguez, "Bloch surface waves engineering in one-dimensional photonic crystals with a chiral cap layer," JOSA B, Vol. 36, No. 8, 2106-2113, 2019.
doi:10.1364/JOSAB.36.002106

33. Mit photonic bands, https://mpb.readthedocs.io/en/latest/.

34. Qian, Y., V. Radisic, and T. Itoh, "Simulation and experiment of photonic band-gap structures for microstrip circuits," Proceedings of 1997 Asia-Pacific Microwave Conference, 585-588, IEEE, 1997.
doi:10.1109/APMC.1997.654609

35. Mbairi, F. and H. Hesselbom, "Microwave bandstop filters using novel artificial periodic substrate electromagnetic band gap structures," IEEE Transactions on Components and Packaging Technologies, Vol. 32, 273-282, July 2009.

36. Siddiqui, O. F. and A. S. S. Mohra, "A harmonic-suppressed microstrip antenna using a metamaterial-inspired compact shunt-capacitor loaded feedline," Progress In Electromagnetics Research C, Vol. 45, 151-162, 2013.
doi:10.2528/PIERC13070502

37. Ren, Y.-J., "A compact dual-frequency rectifying antenna with high-orders harmonic-rejection," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2110-2113, 2007.
doi:10.1109/TAP.2007.900275

38. Gyaang, R., D.-H. Lee, and J. Kim, "Analysis and design of harmonic rejection low noise amplifier with an embedded notch filter," Electronics, Vol. 9, No. 4, 596, 2020.
doi:10.3390/electronics9040596

39. Chou, J.-H., D.-B. Lin, K.-L. Weng, and H.-J. Li, "All polarization receiving rectenna with harmonic rejection property for wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5242-5249, 2014.
doi:10.1109/TAP.2014.2340895

40. Ma, Z. and G. A. Vandenbosch, "Wideband harmonic rejection filtenna for wireless power transfer," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 371-377, 2013.
doi:10.1109/TAP.2013.2287009

41. Brillouin, L. Wave propagation in periodic structures: Electric filters and crystal lattices, 1953.

42. Pozar, D., Microwave Engineering, 2nd Ed., John Wiley and Sons Inc., 1998.

43. Siddiqui, O. F., "The forward transmission matrix (FTM) method for S-parameter analysis of microwave circuits and their metamaterial counterparts," Progress In Electromagnetics Research B, Vol. 66, 123-141, 2016.
doi:10.2528/PIERB16012101