1. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
2. Clavijo, S., R. E. Diaz, and W. E. McKinzie, "Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2678-2690, 2003.
doi:10.1109/TAP.2003.817575 Google Scholar
3. Coccioli, R., F.-R. Yang, K.-P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, 1999.
doi:10.1109/22.798008 Google Scholar
4. Vallecchi, A., J. R. De Luis, F. Capolino, and F. De Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 51-62, 2011.
doi:10.1109/TAP.2011.2167912 Google Scholar
5. Kim, I. K., H. Wang, S. J. Weiss, and V. V. Varadan, "Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications," IEEE Transactions on Vehicular Technology, Vol. 61, No. 4, 1665-1672, 2012.
doi:10.1109/TVT.2012.2189254 Google Scholar
6. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1014-1017, 2015.
doi:10.1109/LAWP.2015.2389274 Google Scholar
7. Wu, T., J. Chen, and P.-F. Wu, "Multi-mode high-gain antenna array loaded with high impedance surface," IEEE Access, Vol. 8, 147070-147076, 2020.
doi:10.1109/ACCESS.2020.3015758 Google Scholar
8. Park, S. I., "Enhancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
doi:10.2528/PIER12110902 Google Scholar
9. Zhang, Y., D. C. Castro, Y. Han, Y. Wu, H. Guo, Z. Weng, Y. Xue, J. Ausra, X. Wang, R. Li, G. Wu, A. V. Guardado, Y. Xie, Z. Xie, D. Ostojich, D. Peng, R. Sun, B. Wang, Y. Yu, J. P. Leshock, S. Qu, C.-J. Su, W. Shen, T. Hang, A. Banks, Y. Huang, J. Radulovic, P. Gutruf, M. R. Bruchas, and J. A. Rogers, "Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics," Proceedings of the National Academy of Sciences of the United States of America, Vol. 116, No. 3, 21427-21437, 2019.
doi:10.1073/pnas.1909850116 Google Scholar
10. Zhang, H., P. Gutruf, K. Meacham, M. C. Montana, X. Zhao, A. M. Chiarelli, A. V. Guardado, A. Norris, L. Lu, Q. Guo, C. Xu, Y. Wu, H. Zhao, X. Ning, W. Bai, I. Kandela, C. R. Haney, D. Chanda, R. W. Gereau, IV, and J. A. Rogers, "Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry," Science Advances, Vol. 5, No. 3, 2019. Google Scholar
11. Kim, W. S., M. Jeong, S. Hong, B. Lim, and S.-I. Park, "Fully implantable low-power high frequency range optoelectronic devices for dual-channel modulation in the brain," Multidisciplinary Digital Publishing Institute Sensors, Vol. 20, 3639-3653, 2020. Google Scholar
12. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "A high-impedance ground plane applied to a cellphone handset geometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 7, 1262-1265, 2001.
doi:10.1109/22.932245 Google Scholar
13. Durgun, A. C., C. A. Balanis, C. R. Birtcher, H. Huang, and H. Yu, "High-impedance surfaces with periodically perforated ground planes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4510-4517, 2014.
doi:10.1109/TAP.2014.2331703 Google Scholar
14. Gu, M., D. Vorobiev, W. S. Kim, H.-T. Chien, H.-M. Woo, S. C. Hong, and S. I. Park, "A novel approach using an inductive loading to lower the resonant frequency of a mushroom-shaped high impedance surface," Progress In Electromagnetics Research M, Vol. 90, 19-26, 2020.
doi:10.2528/PIERM19110607 Google Scholar
15. Bansal, A., B. C. Paul, and K. Roy, "An analytical fringe capacitance model for interconnects using conformal mapping," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 12, 2765-2774, 2006.
doi:10.1109/TCAD.2006.882489 Google Scholar
16. Wheeler, H. A., "Simple inductance formulas for radio coils," Proceedings of the Institute of Radio Engineers, 1398-1400, 1928. Google Scholar
17. Kovacs, P., "Design and optimization of electromagnetic band gap structures,", Doctoral thesis in Brno University of Technology, 2010. Google Scholar
18. Zheng, S. F., Y. Z. Yin, H. L. Zheng, Z. Y. Liu, and A. F. Sun, "Convoluted and interdigitated hexagon loop unit cells for frequency selective surfaces," Electronics Letters, Vol. 47, No. 4, 233-235, 2011.
doi:10.1049/el.2010.7407 Google Scholar
19. Bao, X. L., G. Ruvio, M. J. Ammann, and M. John, "A novel GPS patch antenna on a fractal hi-impedance surface substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 323-326, 2006.
doi:10.1109/LAWP.2006.878900 Google Scholar
20. Anwar, R. S., Y. Wei, L. Mao, and H. Ning, "Miniaturised frequency selective surface based on fractal arrays with square slots for enhanced bandwidth," IET Microwaves, Antennas & Propagation, Vol. 13, No. 11, 1811-1819, 2019.
doi:10.1049/iet-map.2018.5224 Google Scholar
21. Lazarus, N., C. D. Meyer, and S. S. Bedair, "Fractal inductors," IEEE Transactions on Magnetics, Vol. 50, No. 4, 2014.
doi:10.1109/TMAG.2013.2290510 Google Scholar
22. Shoute, G. and D. W. Barlage, "Fractal loop inductors," IEEE Transactions on Magnetics, Vol. 51, No. 6, 2015.
doi:10.1109/TMAG.2015.2388677 Google Scholar
23. Kaipa, C. S. R., A. B. Yakovlev, S. I. Maslovski, and M. G. Silveirinha, "Mushroom-type high-impedance surface with loaded vias: Homogenization modeland ultra-thin design," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1503-1506, 2011.
doi:10.1109/LAWP.2011.2180694 Google Scholar