Vol. 100
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-24
Design of an Inductive Spiral-Loop Loaded Unit Cell in a Mushroom-Shaped High Impedance Surface for Sub-GHz Applications
By
Progress In Electromagnetics Research M, Vol. 100, 1-11, 2021
Abstract
A high impedance surface has far-reaching potential in wireless applications, but realization of the surface operating at sub-GHz ranges is challenging due to its size limits in practical applications. Here, we present a novel inductive technique based on multi-turn square spiral loops. The introduction of the spiral loops to a mushroom-shaped high impedance surface provides additional current path, thereby results in a dramatic increase in its total inductance at given dimensions, and therefore leads to a significant reduction in a resonant frequency of a high impedance plane. Electromagnetic simulation results reveal that a resonant frequency shifts downward 1 GHz at a given dimension, and they are in good agreement with results from an analytical model for the proposed structure. Experimental measurements suggest the feasibility of the proposed approach.
Citation
Sungcheol Hong, Woo Seok Kim, and Sung Il Park, "Design of an Inductive Spiral-Loop Loaded Unit Cell in a Mushroom-Shaped High Impedance Surface for Sub-GHz Applications," Progress In Electromagnetics Research M, Vol. 100, 1-11, 2021.
doi:10.2528/PIERM20091504
References

1. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

2. Clavijo, S., R. E. Diaz, and W. E. McKinzie, "Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2678-2690, 2003.
doi:10.1109/TAP.2003.817575

3. Coccioli, R., F.-R. Yang, K.-P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, 1999.
doi:10.1109/22.798008

4. Vallecchi, A., J. R. De Luis, F. Capolino, and F. De Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 51-62, 2011.
doi:10.1109/TAP.2011.2167912

5. Kim, I. K., H. Wang, S. J. Weiss, and V. V. Varadan, "Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications," IEEE Transactions on Vehicular Technology, Vol. 61, No. 4, 1665-1672, 2012.
doi:10.1109/TVT.2012.2189254

6. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1014-1017, 2015.
doi:10.1109/LAWP.2015.2389274

7. Wu, T., J. Chen, and P.-F. Wu, "Multi-mode high-gain antenna array loaded with high impedance surface," IEEE Access, Vol. 8, 147070-147076, 2020.
doi:10.1109/ACCESS.2020.3015758

8. Park, S. I., "Enhancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
doi:10.2528/PIER12110902

9. Zhang, Y., D. C. Castro, Y. Han, Y. Wu, H. Guo, Z. Weng, Y. Xue, J. Ausra, X. Wang, R. Li, G. Wu, A. V. Guardado, Y. Xie, Z. Xie, D. Ostojich, D. Peng, R. Sun, B. Wang, Y. Yu, J. P. Leshock, S. Qu, C.-J. Su, W. Shen, T. Hang, A. Banks, Y. Huang, J. Radulovic, P. Gutruf, M. R. Bruchas, and J. A. Rogers, "Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics," Proceedings of the National Academy of Sciences of the United States of America, Vol. 116, No. 3, 21427-21437, 2019.
doi:10.1073/pnas.1909850116

10. Zhang, H., P. Gutruf, K. Meacham, M. C. Montana, X. Zhao, A. M. Chiarelli, A. V. Guardado, A. Norris, L. Lu, Q. Guo, C. Xu, Y. Wu, H. Zhao, X. Ning, W. Bai, I. Kandela, C. R. Haney, D. Chanda, R. W. Gereau, IV, and J. A. Rogers, "Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry," Science Advances, Vol. 5, No. 3, 2019.

11. Kim, W. S., M. Jeong, S. Hong, B. Lim, and S.-I. Park, "Fully implantable low-power high frequency range optoelectronic devices for dual-channel modulation in the brain," Multidisciplinary Digital Publishing Institute Sensors, Vol. 20, 3639-3653, 2020.

12. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "A high-impedance ground plane applied to a cellphone handset geometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 7, 1262-1265, 2001.
doi:10.1109/22.932245

13. Durgun, A. C., C. A. Balanis, C. R. Birtcher, H. Huang, and H. Yu, "High-impedance surfaces with periodically perforated ground planes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4510-4517, 2014.
doi:10.1109/TAP.2014.2331703

14. Gu, M., D. Vorobiev, W. S. Kim, H.-T. Chien, H.-M. Woo, S. C. Hong, and S. I. Park, "A novel approach using an inductive loading to lower the resonant frequency of a mushroom-shaped high impedance surface," Progress In Electromagnetics Research M, Vol. 90, 19-26, 2020.
doi:10.2528/PIERM19110607

15. Bansal, A., B. C. Paul, and K. Roy, "An analytical fringe capacitance model for interconnects using conformal mapping," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 12, 2765-2774, 2006.
doi:10.1109/TCAD.2006.882489

16. Wheeler, H. A., "Simple inductance formulas for radio coils," Proceedings of the Institute of Radio Engineers, 1398-1400, 1928.

17. Kovacs, P., "Design and optimization of electromagnetic band gap structures,", Doctoral thesis in Brno University of Technology, 2010.

18. Zheng, S. F., Y. Z. Yin, H. L. Zheng, Z. Y. Liu, and A. F. Sun, "Convoluted and interdigitated hexagon loop unit cells for frequency selective surfaces," Electronics Letters, Vol. 47, No. 4, 233-235, 2011.
doi:10.1049/el.2010.7407

19. Bao, X. L., G. Ruvio, M. J. Ammann, and M. John, "A novel GPS patch antenna on a fractal hi-impedance surface substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 323-326, 2006.
doi:10.1109/LAWP.2006.878900

20. Anwar, R. S., Y. Wei, L. Mao, and H. Ning, "Miniaturised frequency selective surface based on fractal arrays with square slots for enhanced bandwidth," IET Microwaves, Antennas & Propagation, Vol. 13, No. 11, 1811-1819, 2019.
doi:10.1049/iet-map.2018.5224

21. Lazarus, N., C. D. Meyer, and S. S. Bedair, "Fractal inductors," IEEE Transactions on Magnetics, Vol. 50, No. 4, 2014.
doi:10.1109/TMAG.2013.2290510

22. Shoute, G. and D. W. Barlage, "Fractal loop inductors," IEEE Transactions on Magnetics, Vol. 51, No. 6, 2015.
doi:10.1109/TMAG.2015.2388677

23. Kaipa, C. S. R., A. B. Yakovlev, S. I. Maslovski, and M. G. Silveirinha, "Mushroom-type high-impedance surface with loaded vias: Homogenization modeland ultra-thin design," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1503-1506, 2011.
doi:10.1109/LAWP.2011.2180694