Vol. 99
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-29
A Meshless Method for TM Scattering from Arbitrary Shaped Radially Inhomogeneous Cylinders
By
Progress In Electromagnetics Research M, Vol. 99, 35-44, 2021
Abstract
A meshless method for fast solution of the electromagnetic scattering problem related to arbitrary shaped radially inhomogeneous cylinders is proposed. This is an important problem since radially inhomogeneous circular cylinders are common in various engineering applications, and deformations such as notches, grooves and noncircular holes on such cylinders are required for different purposes. This approach is basically an extension of the previously proposed method, which is based on Fourier series representation of the electric field on boundaries. In the original method, a multilayer cylinder with arbitrary shaped homogeneous layers is considered, and accordingly, the general solution of the cylindrical wave equation in homogeneous medium is used. Here we modify the method by considering the general solution in radially inhomogeneous medium, and derive compact expressions for the field.
Citation
Birol Aslanyürek, and Tolga Ulaş Gürbüz, "A Meshless Method for TM Scattering from Arbitrary Shaped Radially Inhomogeneous Cylinders," Progress In Electromagnetics Research M, Vol. 99, 35-44, 2021.
doi:10.2528/PIERM20100403
References

1. El-Galy, I. M., B. I. Saleh, and M. H. Ahmed, "Functionally graded materials classifications and development trends from industrial point of view," SN Appl. Sci., Vol. 1, 1378, 2019.
doi:10.1007/s42452-019-1413-4

2. Westcott, B. S., "Electromagnetic wave propagation in cylindrically stratified isotropic media," Electronics Letters, Vol. 4, No. 16, 323-324, 1968.
doi:10.1049/el:19680252

3. Burman, R., "Electromagnetic scattering by a cylinder with an inhomogeneous sheath," Electronics Letters, Vol. 2, No. 2, 66-67, 1966.
doi:10.1049/el:19660052

4. Yeh, C. and Z. A. Kaprielian, "Scattering from a cylinder coated with an inhomogeneous dielectric sheath," Canadian Journal of Physics, Vol. 41, 143-151, 1963.
doi:10.1139/p63-013

5. Samaddar, S. N., "Scattering of plane electromagnetic waves by radially inhomogeneous infinite cylinders," Il Nuovo Cimento B, Vol. 66, No. 1, 33-50, 1970.
doi:10.1007/BF02710188

6. Tsalamengas, J., "Oblique scattering from radially inhomogeneous dielectric cylinders: An exact Volterra integral equation formulation," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 213, 62-73, 2018.
doi:10.1016/j.jqsrt.2018.04.016

7. Kai, L. and A. D'Alessio, "Finely stratified cylinder model for radially inhomogeneous cylinders normally irradiated by electromagnetic plane waves," Applied Optics, Vol. 34, No. 24, 5520-5530, 1995.
doi:10.1364/AO.34.005520

8. Kiani, M., A. Abdolali, and M. M. Salary, "Analysis of scattering from cylindrical structures coated by radially inhomogeneous layer using Taylor's series method," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 13, 1642-1660, 2014.
doi:10.1080/09205071.2014.938172

9. Jarem, J. M., "Rigorous coupled wave analysis of radially and azimuthally-inhomogeneous, elliptical, cylindrical systems," Progress In Electromagnetics Research, Vol. 34, 89-115, 2001.
doi:10.2528/PIER01032302

10. Watanabe, Y. and H. Sato, "Review fabrication of functionally graded materials under a centrifugal force," Nanocomposites with Unique Properties and Applications in Medicine and Industry, 133-150, edited by John Cuppoletti, IntechOpen, London, 2011.

11. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

12. Jin, J. M. and V. V. Liepa, "Application of hybrid finite element method to electromagnetic scattering from coated cylinders," IEEE Trans. Antennas Propag., Vol. 36, No. 1, 50-54, 1988.
doi:10.1109/8.1074

13. Aslanyürek, B. and T. U. Gürbüz, "A continuity-based series solution for electromagnetic scattering by arbitrary shaped multilayer cylinders: TM case," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 812-819, 2017.
doi:10.1109/TAP.2016.2637859

14. Yao, S., C. Cheng, Z. Hu, and Z. Niu, "Investigation of singularity orders and eigen-angular functions for V-notches in radially inhomogeneous materials," Mechanics of Advanced Materials and Structures, Vol. 25, No. 4, 295-303, 2016.
doi:10.1080/15376494.2016.1255829

15. Wang, W., H. Yuan, X. Li, and P. Shi, "Stress concentration and damage factor due to central elliptical hole in functionally graded panels subjected to uniform tensile traction," Materials, Vol. 12, No. 3, 422, 2019.
doi:10.3390/ma12030422

16. Aslanyürek, B. and T. U. Gürbüz, "An efficient recursive approach for electromagnetic scattering by arbitrary-shaped multilayer cylinders," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 8, 1375-1379, 2020.
doi:10.1109/LAWP.2020.3001484

17. Aslanyürek, B. and T. U. Gürbüz, "A series solution for TE electromagnetic scattering by arbitrary shaped multilayer cylinders," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 1, 38-41, 2018.
doi:10.1109/LAWP.2017.2772347

18. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge Univ. Press, 2002.

19. Frezza, F., F. Mangini, and N. Tedeschi, "Introduction to electromagnetic scattering: Tutorial," J. Opt. Soc. Am. A, Vol. 35, 163-173, 2018.
doi:10.1364/JOSAA.35.000163