Vol. 102
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-05-19
Modern Applications of the Bateman-Whittaker Theory
By
Progress In Electromagnetics Research M, Vol. 102, 171-180, 2021
Abstract
The Bateman-Whittaker theory, which was developed a century ago, is shown to be a comprehensive basis for deriving a large class of null spatiotemporally localized electromagneticwaves characterized by intriguing vortical structures. In addition, it provides the modeling for studying topological structures dealing with linked and knotted electromagnetic waves.
Citation
Ioannis Besieris, Peeter Saari, and Amr Shaarawi, "Modern Applications of the Bateman-Whittaker Theory," Progress In Electromagnetics Research M, Vol. 102, 171-180, 2021.
doi:10.2528/PIERM21040802
References

1. Weber, H., "Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen,", Friedrich Vieweg und Sohn, Brunschweig, 1901.
doi:10.1002/andp.19073270313        Google Scholar

2. Silberstein, L., "Electromagnetische Grundgleichungen in bivectorieller Behandlung," Ann. D. Phys., Vol. 22, 579-586, 1907.
doi:10.1088/1751-8113/46/5/053001        Google Scholar

3. Bialynicki-Birula, I. and Z. Bialynicki-Birula, "The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism," J. Phys. A: Math. Theor., Vol. 46, 053001, 2013.
doi:10.1112/plms/s2-1.1.367        Google Scholar

4. Whittaker, E. T., "On the expressions of the electromagnetic field due to electrons by means of two scalar potential functions," Proc. London Math. Soc., Vol. 1, 367-372, 1904.        Google Scholar

5. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell’s Equations, Dover, New York, 1955.
doi:10.2528/PIER97072900

6. Besieris, I. M., M. Abdel-Rahman, A. M. Shaarawi, and A. Chatzipetros, "Two fundamental representations of localized pulse solutions to the scalar wave equation," Progress In Electromagnetics Research, Vol. 19, 1-48, 1998.
doi:10.1063/1.526579        Google Scholar

7. Ziolkowski, R. W., "Exact solutions of the wave equation with complex sources," J. Math. Phys., Vol. 26, 861-863, 1985.
doi:10.1103/PhysRevA.102.063529        Google Scholar

8. So, I. A., A. B. Plachenov, and A. P. Kiselev, "Simple unidirectional finite-energy pulses," Phys. Rev. A, Vol. 02, 063529, 2020.
doi:10.2528/PIERB08042807        Google Scholar

9. Besieris, I. M. and A. M. Shaarawi, "Spatiotemporally localized null electromagnetic waves I. Luminal," Progress In Electromagnetics Research B, Vol. 8, 1-28, 2008.        Google Scholar

10. Besieris, I. M. and A. M. Shaarawi, "Spatiotemporally localized null electromagnetic waves," Non-Diffracting Waves, H. Hernandez-Figueroa, M. Zamboni-Rached, and E. Recami, ed., 161-188, New York, 2013.
doi:10.1038/nphys1056        Google Scholar

11. Irvine, W. T. M. and D. Bouwmeester, "Linked and knotted beams of light," Nat. Phys., Vol. 4, 716-720, 2008.
doi:10.1088/0305-4470/23/16/007        Google Scholar

12. Ranada, A. F., "Knotted solutions of Maxwell equations in vacuum," J. Phys. A: Math. Gen., Vol. 23, L815-L820, 1990.
doi:10.1364/OL.34.003887        Google Scholar

13. Besieris, I. M. and A. M. Shaarawi, "Hopf-Ran˜ada linked and knotted light beam solution viewed as a null electromagnetic field," Opt. Lett., Vol. 34, 3887-3889, 2009.
doi:10.1103/PhysRevLett.111.150404        Google Scholar

14. Kedia, H., I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, "Tying knots in light fields," Phys. Rev. Lett., Vol. 111, 150404, 2017.
doi:10.1016/j.physrep.2016.11.001        Google Scholar

15. Arrayas, M., D. Bouwmeester, and J. L. Trueba, "Knots in electromagnetism," Phys. Rep., Vol. 667, 1-61, 2017.
doi:10.1098/rspa.1984.0117        Google Scholar

16. Hogan, P. A., "Bateman electromagnetic waves," Proc. R. Soc. Lond. A, Vol. 396, 199-204, 1984.        Google Scholar

17. Cunningham, E., "The principle of relativity in electrodynamics and an extension thereof," Proc. London. Math. Soc., Vol. 8, 77-98, 1909.
doi:10.1112/plms/s2-8.1.223        Google Scholar

18. Bateman, H., "The transformation of electrodynamical equations," Proc. London. Math. Soc., Vol. 8, 223-264, 1910.
doi:10.1364/JOSAA.10.000075        Google Scholar

19. Ziolkowski, R. W., A. M. Shaarawi, and I. M. Besieris, "Aperture realizations of the exact solutions to homogeneous-wave equations," J. Opt. Soc. Am. A, Vol. 10, 75-87, 1993.
doi:10.1109/58.143178        Google Scholar

20. Lu, J.-Y. and J. F. Greenleaf, "Experimental verification of nondiffracting X waves," IEEE Trans. Ultrasonic. Ferroelec., Freq. Contr., Vol. 39, 441-446, 1992.
doi:10.1103/PhysRevLett.79.4135        Google Scholar

21. Saari, P. and K. Reivelt, "Evidence of X-shaped propagation-invariant localized light waves," Phys. Rev. Lett., Vol. 79, 4135-4137, 1997.
doi:10.1103/PhysRevE.66.056611        Google Scholar

22. Reivelt, K. and P. Saari, "Experimental demonstration of realizability of optical focus wave modes," Phys. Rev. E, Vol. 66, 056611-1-9, 2002.
doi:10.1103/PhysRevA.67.063820        Google Scholar

23. Grunwald R., V. Kebbel, U. Griebner, U. Neumann, A. Kummrow, M. Rini, E. T. J. Nibbering, M. Piche, G. Rousseau, and M. Fortin, "Generation and characterization of spatially and temporally localized few-cycle optical wave packets," Phys. Rev. A, Vol. 67, 063820, 2003.
doi:10.1364/OL.34.002276        Google Scholar

24. Bowlan, P., H. Valtna-Lukner, M. Lohmus, P. Piksarv, P. Saari, and R. Trebin, "Measurement of the spatio-temporal field of ultrashort Bessel-X pulses," Opt. Lett., Vol. 34, 2276, 2009.        Google Scholar

25. Saari, P., "X-type waves in ultrafast optics," Non-Diffracting Waves, H. E. Hernandez-Figueroa, E. Recami, and M. Zamboni-Rached, ed., 109-134, Wiley, New York, 2013.
doi:10.1038/s41566-017-0028-9        Google Scholar

26. Kondakci, H. E. and A. F. Abouraddy, "Diffraction-free space-time light sheets," Nat. Photon., Vol. 11, 733-740, 2017.
doi:10.1364/OPTICA.6.000139        Google Scholar

27. Bhaduri, B., M. Yessenov, and A. F. Abouraddy, "Space-time wave packets that travel in optical materials at the speed of light in vacuum," Optica, Vol. 6, 139-145, 2019.
doi:10.1103/PhysRevA.99.023856        Google Scholar

28. Yessenov, M., B. Bhaduri, H. E. Kondakci, and A. F. Abouraddy, "Classification of propagation-invariant of space-time wave packets in free space," Phys. Rev. A, Vol. 99, 023856, 2019.
doi:10.1103/PhysRevLett.84.4830        Google Scholar

29. Mugnai D., A. Ranfagni and R. Ruggeri, "Observation of superluminal behaviors in wave propagation," Phys. Rev. Lett., Vol. 84, 4830, 2000.
doi:10.1103/PhysRevB.97.201409        Google Scholar

30. Papasimakis, N., T. Raybould, V. A. Fedotov, D. P. Tsai, I. Youngs, and N. I. Zheludev, "Pulse generation scheme for flying electromagnetic doughnuts," Phys. Rev. B, Vol. 97, 201409-1-6, 2018.
doi:10.1063/1.5047397        Google Scholar

31. Comite, D., W. Fuscaldo, S. K. Podilchak, and V. Gomez-Guillamon Buenndia, "Microwave generation of X-waves by means of planar leaky-wave antenna," Appl. Phys. Lett., Vol. 113, 144102- 1-5, 2018.
doi:10.1103/PhysRevApplied.9.054005        Google Scholar

32. Fuscaldo, W., D. Comite, A. Boesso, P. Baccarelli, P. Bughignoli, and A. Galli, "Focusing leaky waves: A class of electromagnetic localized waves with complex spectra," Phys. Rev. Appl., Vol. 9, 054005-1-15, 2018.        Google Scholar