Vol. 102
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-05-19
Modern Applications of the Bateman-Whittaker Theory
By
Progress In Electromagnetics Research M, Vol. 102, 171-180, 2021
Abstract
The Bateman-Whittaker theory, which was developed a century ago, is shown to be a comprehensive basis for deriving a large class of null spatiotemporally localized electromagneticwaves characterized by intriguing vortical structures. In addition, it provides the modeling for studying topological structures dealing with linked and knotted electromagnetic waves.
Citation
Ioannis Besieris Peeter Saari Amr Shaarawi , "Modern Applications of the Bateman-Whittaker Theory," Progress In Electromagnetics Research M, Vol. 102, 171-180, 2021.
doi:10.2528/PIERM21040802
http://www.jpier.org/PIERM/pier.php?paper=21040802
References

1. Weber, H., "Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen,", Friedrich Vieweg und Sohn, Brunschweig, 1901.
doi:10.1002/andp.19073270313

2. Silberstein, L., "Electromagnetische Grundgleichungen in bivectorieller Behandlung," Ann. D. Phys., Vol. 22, 579-586, 1907.
doi:10.1088/1751-8113/46/5/053001

3. Bialynicki-Birula, I. and Z. Bialynicki-Birula, "The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism," J. Phys. A: Math. Theor., Vol. 46, 053001, 2013.
doi:10.1112/plms/s2-1.1.367

4. Whittaker, E. T., "On the expressions of the electromagnetic field due to electrons by means of two scalar potential functions," Proc. London Math. Soc., Vol. 1, 367-372, 1904.

5. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell’s Equations, Dover, New York, 1955.
doi:10.2528/PIER97072900

6. Besieris, I. M., M. Abdel-Rahman, A. M. Shaarawi, and A. Chatzipetros, "Two fundamental representations of localized pulse solutions to the scalar wave equation," Progress In Electromagnetics Research, Vol. 19, 1-48, 1998.
doi:10.1063/1.526579

7. Ziolkowski, R. W., "Exact solutions of the wave equation with complex sources," J. Math. Phys., Vol. 26, 861-863, 1985.
doi:10.1103/PhysRevA.102.063529

8. So, I. A., A. B. Plachenov, and A. P. Kiselev, "Simple unidirectional finite-energy pulses," Phys. Rev. A, Vol. 02, 063529, 2020.
doi:10.2528/PIERB08042807

9. Besieris, I. M. and A. M. Shaarawi, "Spatiotemporally localized null electromagnetic waves I. Luminal," Progress In Electromagnetics Research B, Vol. 8, 1-28, 2008.

10. Besieris, I. M. and A. M. Shaarawi, "Spatiotemporally localized null electromagnetic waves," Non-Diffracting Waves, H. Hernandez-Figueroa, M. Zamboni-Rached, and E. Recami, ed., 161-188, New York, 2013.
doi:10.1038/nphys1056

11. Irvine, W. T. M. and D. Bouwmeester, "Linked and knotted beams of light," Nat. Phys., Vol. 4, 716-720, 2008.
doi:10.1088/0305-4470/23/16/007

12. Ranada, A. F., "Knotted solutions of Maxwell equations in vacuum," J. Phys. A: Math. Gen., Vol. 23, L815-L820, 1990.
doi:10.1364/OL.34.003887

13. Besieris, I. M. and A. M. Shaarawi, "Hopf-Ran˜ada linked and knotted light beam solution viewed as a null electromagnetic field," Opt. Lett., Vol. 34, 3887-3889, 2009.
doi:10.1103/PhysRevLett.111.150404

14. Kedia, H., I. Bialynicki-Birula, D. Peralta-Salas, and W. T. M. Irvine, "Tying knots in light fields," Phys. Rev. Lett., Vol. 111, 150404, 2017.
doi:10.1016/j.physrep.2016.11.001

15. Arrayas, M., D. Bouwmeester, and J. L. Trueba, "Knots in electromagnetism," Phys. Rep., Vol. 667, 1-61, 2017.
doi:10.1098/rspa.1984.0117

16. Hogan, P. A., "Bateman electromagnetic waves," Proc. R. Soc. Lond. A, Vol. 396, 199-204, 1984.

17. Cunningham, E., "The principle of relativity in electrodynamics and an extension thereof," Proc. London. Math. Soc., Vol. 8, 77-98, 1909.
doi:10.1112/plms/s2-8.1.223

18. Bateman, H., "The transformation of electrodynamical equations," Proc. London. Math. Soc., Vol. 8, 223-264, 1910.
doi:10.1364/JOSAA.10.000075

19. Ziolkowski, R. W., A. M. Shaarawi, and I. M. Besieris, "Aperture realizations of the exact solutions to homogeneous-wave equations," J. Opt. Soc. Am. A, Vol. 10, 75-87, 1993.
doi:10.1109/58.143178

20. Lu, J.-Y. and J. F. Greenleaf, "Experimental verification of nondiffracting X waves," IEEE Trans. Ultrasonic. Ferroelec., Freq. Contr., Vol. 39, 441-446, 1992.
doi:10.1103/PhysRevLett.79.4135

21. Saari, P. and K. Reivelt, "Evidence of X-shaped propagation-invariant localized light waves," Phys. Rev. Lett., Vol. 79, 4135-4137, 1997.
doi:10.1103/PhysRevE.66.056611

22. Reivelt, K. and P. Saari, "Experimental demonstration of realizability of optical focus wave modes," Phys. Rev. E, Vol. 66, 056611-1-9, 2002.
doi:10.1103/PhysRevA.67.063820

23. Grunwald R., V. Kebbel, U. Griebner, U. Neumann, A. Kummrow, M. Rini, E. T. J. Nibbering, M. Piche, G. Rousseau, and M. Fortin, "Generation and characterization of spatially and temporally localized few-cycle optical wave packets," Phys. Rev. A, Vol. 67, 063820, 2003.
doi:10.1364/OL.34.002276

24. Bowlan, P., H. Valtna-Lukner, M. Lohmus, P. Piksarv, P. Saari, and R. Trebin, "Measurement of the spatio-temporal field of ultrashort Bessel-X pulses," Opt. Lett., Vol. 34, 2276, 2009.

25. Saari, P., "X-type waves in ultrafast optics," Non-Diffracting Waves, H. E. Hernandez-Figueroa, E. Recami, and M. Zamboni-Rached, ed., 109-134, Wiley, New York, 2013.
doi:10.1038/s41566-017-0028-9

26. Kondakci, H. E. and A. F. Abouraddy, "Diffraction-free space-time light sheets," Nat. Photon., Vol. 11, 733-740, 2017.
doi:10.1364/OPTICA.6.000139

27. Bhaduri, B., M. Yessenov, and A. F. Abouraddy, "Space-time wave packets that travel in optical materials at the speed of light in vacuum," Optica, Vol. 6, 139-145, 2019.
doi:10.1103/PhysRevA.99.023856

28. Yessenov, M., B. Bhaduri, H. E. Kondakci, and A. F. Abouraddy, "Classification of propagation-invariant of space-time wave packets in free space," Phys. Rev. A, Vol. 99, 023856, 2019.
doi:10.1103/PhysRevLett.84.4830

29. Mugnai D., A. Ranfagni and R. Ruggeri, "Observation of superluminal behaviors in wave propagation," Phys. Rev. Lett., Vol. 84, 4830, 2000.
doi:10.1103/PhysRevB.97.201409

30. Papasimakis, N., T. Raybould, V. A. Fedotov, D. P. Tsai, I. Youngs, and N. I. Zheludev, "Pulse generation scheme for flying electromagnetic doughnuts," Phys. Rev. B, Vol. 97, 201409-1-6, 2018.
doi:10.1063/1.5047397

31. Comite, D., W. Fuscaldo, S. K. Podilchak, and V. Gomez-Guillamon Buenndia, "Microwave generation of X-waves by means of planar leaky-wave antenna," Appl. Phys. Lett., Vol. 113, 144102- 1-5, 2018.
doi:10.1103/PhysRevApplied.9.054005

32. Fuscaldo, W., D. Comite, A. Boesso, P. Baccarelli, P. Bughignoli, and A. Galli, "Focusing leaky waves: A class of electromagnetic localized waves with complex spectra," Phys. Rev. Appl., Vol. 9, 054005-1-15, 2018.