Vol. 115
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-09-28
Novel Sparse Planar Array Synthesis Model for Microwave Power Transmission Systems with High Efficiency and Low Cost
By
Progress In Electromagnetics Research C, Vol. 115, 245-259, 2021
Abstract
A novel algorithm is developed to realize the optimal synthesis of a sparse nonuniform-amplitude nonuniform-distribution planar array (SNANDPA) in microwave power transmission (MPT) systems. The dual compression factor particle swarm optimization (DCFPSO) algorithm and the subarray partition technique are adopted to realize the optimal synthesis of SNANDPA. The DCFPSO algorithm first optimizes beam collection efficiency (BCE) and side-lobe level outside the receiving region (CSL) of SNANDPA which ensure efficient energy transmission of an MPT system and suppress the influence of electromagnetic wave radiated by antenna array on the environment. The subarray partition technique then simplifies the feed network to minimize the system cost. SNANDPA parameters including transmitting aperture, receiving aperture, BCE, CSL, power pattern, element weight, and element distribution, can be obtained efficiently via the proposed method. Representative numerical cases under the different numbers of subarray and elements conditions are analyzed and compared with those of other two traditional MPT array models. Experimental results show that, when the transmitting aperture is 4.5λ×4.5λ and the square receiving region u0=v0=0.2, BCE and CSL are 94.96% and -17.09 dB, respectively, and only 64 elements and 8 amplifiers are required. We conclude that the proposed model can be used to create an efficient and low-cost MPT system.
Citation
Jianxiong Li Shengjia Chang , "Novel Sparse Planar Array Synthesis Model for Microwave Power Transmission Systems with High Efficiency and Low Cost," Progress In Electromagnetics Research C, Vol. 115, 245-259, 2021.
doi:10.2528/PIERC21052404
http://www.jpier.org/PIERC/pier.php?paper=21052404
References

1. Cheng, C., et al., "Load-independent wireless power transfer system for multiple loads over a long distance," IEEE Transactions on Power Electronics, Vol. 34, No. 9, 9279-9288, 2019.
doi:

504 Gateway Time-out


2. Nakamoto, Y., et al., "A study on microwave power transfer to rectangular antenna for stratospheric platform," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 996-998, 2019.
doi:The server didn't respond in time.

3. Lee, C. H., et al., "Wireless power transfer system for an autonomous electric vehicle," 2020 IEEE Wireless Power Transfer Conference, 467-470, 2020.
doi:

4. Lu, F., et al., "A high-efficiency and long-distance power-relay system with equal power distribution," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, No. 2, 1419-1427, 2020.
doi:10.1109/JESTPE.2019.2898125

5. Nakamoto, Y., N. Hasegawa, Y. Ohta, and N. Shinohara, "A study on microwave power transmission system to high altitude platform station considering rectification efficiency," 2020 IEEE Asia-Pacific Microwave Conference, 187-189, 2020.
doi:10.1109/APMC47863.2020.9331520

6. Massa, A., G. Oliveri, F. Viani, and P. Rocca, "Array designs for long-distance wireless power transmission: State-of-the-art and innovative solutions," Proceedings of the IEEE, Vol. 101, No. 6, 1464-1481, 2013.
doi:10.1109/JPROC.2013.2245491

7. Rocca, P., G. Oliveri, and A. Massa, "Array synthesis for optimal wireless power systems," 2014 IEEE Antennas and Propagation Society International Symposium, 1407-1408, 2014.

8. Shinohara, N., "History of research and development of beam wireless power transfer," 2018 IEEE Wireless Power Transfer Conference, 1-4, 2018.

9. Shinohara, N., "Wireless power transfer in Japan: Regulations and activities," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-4, 2020.

10. Shinohara, N., "History and innovation of wireless power transfer via microwaves," IEEE Journal of Microwaves, Vol. 1, No. 1, 218-228, 2021.
doi:10.1109/JMW.2020.3030896

11. Li, X., et al., "Planar array synthesis for optimal microwave power transmission with multiple constraints," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 70-73, 2017.
doi:10.1109/LAWP.2016.2555980

12. Zhou, H., X. Yang, and S. Rahim, "Array synthesis for optimal microwave power transmission in the presence of excitation errors," IEEE Access, Vol. 6, 27433-27441, 2018.
doi:10.1109/ACCESS.2018.2834947

13. Li, X., K. M. Luk, and B. Duan, "Multiobjective optimal antenna synthesis for microwave wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2739-2744, 2019.
doi:10.1109/TAP.2019.2893312

14. Chatterjee, S., S. Chatterjee, B. Bandyopadhyay, and A. Majumder, "Simultaneous control of side lobe level and beamwidth in planar array antenna using restricted search evolutionary algorithms," 2019 IEEE Asia-Pacific Microwave Conference, 673-675, 2019.
doi:10.1109/APMC46564.2019.9038404

15. Lopez, P., J. A. Rodriguez, F. Ares, and E. Moreno, "Subarray weighting for the difference patterns of monopulse antennas: Joint optimization of subarray configurations and weights," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, 1606-1608, 2001.
doi:10.1109/8.964098

16. Li, X., B. Duan, and L. Song, "Design of clustered planar arrays for microwave wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 606-611, 2019.
doi:10.1109/TAP.2018.2876192

17. Cui, C., et al., "Synthesis of subarrayed monopluse arrays with contiguous elements using a DE algorithm," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4340-4345, 2017.
doi:10.1109/TAP.2017.2714021

18. Prasad, S., "On the index for array optimization and the discrete prolate spheroidal functions," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 5, 1021-1023, 1982.
doi:10.1109/TAP.1982.1142900

19. Oliveri, G., L. Poli, and A. Mass, "Maximum efficiency beam synthesis of radiating planar arrays for wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2490-2499, 2013.
doi:10.1109/TAP.2013.2241714

20. Ratnaweera, A., S. K. Halgamuge, and H. C. Watson, "Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, 240-255, 2004.
doi:10.1109/TEVC.2004.826071

21. Banerjee, C. and R. Sawal, "PSO with dynamic acceleration coefficient based on mutiple constraint satisfaction: Implementing fuzzy inference system," 2014 International Conference on Advances in Electronics Computers and Communications, 1-5, 2014.

22. Yang, J., S. Yang, and P. Ni, "A vector tabu search algorithm with enhanced searching ability for pareto solutions and its application to multiobjective optimizations," IEEE Transactions on Magnetics, Vol. 52, No. 3, 1-4, 2016.

23. Rocca, P., G. Oliveri, and A. Massa, "Innovative array designs for wireless power transmission," International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 2011.

24. Morabito, A. F., A. R. Laganà, and T. Isernia, "Optimizing power transmission in given target areas in the presence of protection requirements," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 44-47, 2014.

25. Li, J., J. Pan, and X. Li, "A novel synthesis method of sparse nonuniform-amplitude concentric ring arrays for microwave power transmission," Progress In Electromagnetics Research C, Vol. 107, 1-15, 2021.

26. Zhou, H. W., X. X. Yang, and S. Rahim, "Synthesis of the sparse uniform-amplitude concentric ring transmitting array for optimal microwave power transmission," International Journal of Antennas & Propagation, 2018.

27. Qiao, X.-L. and Chen, "Sparse antenna array design for MIMO radar using multiobjective differential evolution," International Journal of Antennas & Propagation, 2016.
doi:10.1155/2016/8980495