Vol. 105
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-11-06
Generalized Kronecker Array Transform
By
Progress In Electromagnetics Research M, Vol. 105, 173-181, 2021
Abstract
Fast evaluation of the array response matrix and its vector or matrix products play a central role in several applied electromagnetics and array processing applications. In this context, the Kronecker Array Transform (KAT) has been introduced by Ribeiro and Nascimento as an efficient factorization technique that can be applied when the elements of a planar array and the wavevectors exhibit separability. The computational savings leverage on the decomposition of the full array response matrix in the Kronecker product of two smaller array response matrices. In this contribution we extend and apply the generalized Kronecker product introduced by Fino and Algazi to the array response matrix decomposition problem. The resulting Generalized Kronecker Array Transform (GKAT) broadens the class of problems that can be addressed while achieving the same computational savings. The complexity of GKAT is compared with Non-Uniform Fast Fourier Transform (NUFFT), and optimal integration of the two techniques is elaborated.
Citation
Piero Angeletti, "Generalized Kronecker Array Transform," Progress In Electromagnetics Research M, Vol. 105, 173-181, 2021.
doi:10.2528/PIERM21070202
References

1. Van Trees, H. L., Optimum Array Processing: Part IV of Detection, Estimation,and Modulation Theory, Wiley, 2002.

2. Angeletti, P. and G. Toso, "Aperiodic arrays for space applications: A combined amplitude/density synthesis approach," 3rd European Conference on Antennas and Propagation, 2026-2030, Berlin, 2009.

3. Angeletti, P., "Multiple beams from planar arrays," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1750-1761, April 2014.
doi:10.1109/TAP.2013.2267198

4. Bhattacharyya, A. K., "Projection matrix method for shaped beam synthesis in phased arrays and reflectors," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 675-683, March 2007.
doi:10.1109/TAP.2007.891570

5. Capozzoli, A., C. Curcio, A. Liseno, and J. Piccinotti, "Efficient computing of far-field radiation in two dimension," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2034-2037, June 2017.
doi:10.1109/LAWP.2017.2694998

6. Rahmat-Samii, Y. and R. Cheung, "Nonuniform sampling techniques for antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 3, 268-279, March 1987.
doi:10.1109/TAP.1987.1144092

7. Yaghjian, A., "An overview of near-field antenna measurements," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 1, 30-45, January 1986.
doi:10.1109/TAP.1986.1143727

8. Le Vine, D. M. and J. C. Good, Aperture Synthesis for Microwave Radiometers in Space, NASA Tech. Memo. 85033, Goddard Space Flight Center, 1983.

9. Thompson, A. R., J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, John Wiley and Sons, 1986.

10. Wajer, F. T. A. W., D. van Ormondt, M. Bourgeois, and D. Graveron-Demilly, "Nonuniform sampling in magnetic resonance imaging," 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 6, 3846-3849, 2000.
doi:10.1109/ICASSP.2000.860242

11. Fourmont, K., "Non-equispaced fast Fourier transforms with applications to tomography," Journal of Fourier Analysis and Applications, Vol. 9, No. 5, 431-450, September 2003.
doi:10.1007/s00041-003-0021-1

12. Goto, K. and R. van de Geijn, "Anatomy of high-performance matrix multiplication," ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 12, May 2008.

13. Schatz, M. D., T. Meng Low, R. A. van de Geijn, and T. G. Kolda, "Exploiting symmetry in tensors for high performance: Multiplication with symmetric tensors," SIAM Journal on Scientific Computing, Vol. 36, No. 5, C453-C479, September 2014.
doi:10.1137/130907215

14. Kailath, T. and A. H. Sayed, Fast Reliable Algorithms for Matrices with Structure, Society for Industrial Mathematics, 1987.

15. Angeletti, P. and M. Lisi, "Digital beam-forming network having a reduced complexity and array antenna comprising the same,", US Patent No: US9876546, filed December 2013.

16. Dutt, A. and V. Rokhlin, "Fast Fourier transforms for nonequispaced data," SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1368-1393, November 1993.
doi:10.1137/0914081

17. Keiner, J., S. Kunis, and D. Potts, "Using NFFT 3 - Software library for various nonequispaced fast Fourier transforms," ACM Transactions on Mathematical Software (TOMS), Vol. 36, No. 4, 1-30, 2009.
doi:10.1145/1555386.1555388

18. Capozzoli, A., C. Curcio, and A. Liseno, "Optimized nonuniform FFTs and their application to array factor computation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3924-3938, June 2019.
doi:10.1109/TAP.2018.2826368

19. Bellman, R., Introduction to Matrix Analysis, 227, McGraw-Hill, 1960.

20. Steeb, W.-H. and Y. Hardy, Matrix Calculus and Kronecker Product, World Scientific, 2011.
doi:10.1142/8030

21. Regalia, P. A. and M. K. Mitra, "Kronecker products, unitary matrices, and signal processing applications," SIAM Review, Vol. 31, No. 4, 586-613, 1989.
doi:10.1137/1031127

22. Granata, J., M. Conner, and R. Tolimieri, "Recursive fast algorithms and the role of the tensor product," IEEE Transactions on Signal Processing, Vol. 40, 2921-2930, 1992.
doi:10.1109/78.175736

23. Van Loan, C., Computational Frameworks for the Fast Fourier Transform, SIAM Publications, 1992.
doi:10.1137/1.9781611970999

24. Fino, B. J. and V. R. Algazi, "A unified treatment of discrete fast unitary transforms," SIAM Journal on Computing, Vol. 6, No. 4, 700-717, 1971.
doi:10.1137/0206051

25. Ribeiro, F. P. and V. H. Nascimento, "Fast transforms for acoustic imaging - Part I: Theory," IEEE Transactions on Image Processing, Vol. 20, No. 8, 2229-2240, August 2011.
doi:10.1109/TIP.2011.2118220

26. Masiero, B. and V. H. Nascimento, "Revisiting the Kronecker array transform," IEEE Signal Processing Letters, Vol. 24, No. 5, 525-529, May 2017.
doi:10.1109/LSP.2017.2674969

27. Bagchi, S. and S. K. Mitra, "The nonuniform discrete Fourier transform and its applications in filter design. II. 2-D," IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 43, No. 6, 434-444, June 1996.

28. Mason, S. J., "Feedback theory - Some properties of signal flow graphs," Proceedings of the IRE, Vol. 41, No. 9, 1144-1156, September 1953.
doi:10.1109/JRPROC.1953.274449

29. Mason, S. J., "Feedback theory - Further properties of signal flow graphs," Proceedings of the IRE, Vol. 44, No. 7, 920-926, July 1956.
doi:10.1109/JRPROC.1956.275147

30. Elliott, D. F., "Fast Fourier transforms," Handbook of Digital Signal Processing: Engineering Applications, Chapter 7 in D. F. Elliott (Ed), Academic Press, 1988.

31. Lo, Y. and S. Lee, "Affine transformation and its application to antenna arrays," IEEE Trans. on Antennas and Propagation, Vol. 13, No. 6, 890-896, November 1965.
doi:10.1109/TAP.1965.1138541