Vol. 100
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-19
Broadband Surface-Mount Differential-Fed Dipole Antenna and Its Array for 5G Millimeter-Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 100, 137-143, 2021
Abstract
This letter proposes a differentially-fed broadband dipole and its 1×8 array. The antenna achieves cost-effectiveness by using a low-cost FR4 substrate. The antenna obtains surface mount capability due to the ball grid array (BGA) package. The measured results show that the proposed antenna array achieves a wide impedance bandwidth of 37.8% (24-35.2 GHz). The gain of the 1×8 array is greater than 10.1 dBi, and the cross-polarization level in the main beam direction is less than -20 dB. the radiation pattern of the 1×8 array is stable and unidirectional. The proposed antenna array covers the 5G N257 (26.5-29.5 GHz), N258 (24.25-27.5 GHz), and N261 (27.5-28.35 GHz) bands.
Citation
Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Broadband Surface-Mount Differential-Fed Dipole Antenna and Its Array for 5G Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 100, 137-143, 2021.
doi:10.2528/PIERL21091001
References

1. Andrews, J. G., "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

2. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993

3. Mak, K.-M., K.-K. So, H.-W. Lai, and K.-M. Luk, "A magnetoelectric dipole leaky-wave antenna for millimeter-wave application," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6395-6402, Dec. 2017.
doi:10.1109/TAP.2017.2722868

4. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514

5. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888

6. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6904-6914, Dec. 2017.
doi:10.1109/TAP.2017.2759899

7. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267

8. Zhang, Y., "Antenna-in-package technology: Its early development [Historical Corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916

9. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412

10. Liu, X., W. Zhang, D. Hao, and Y. Liu, "Cost-effective surface-mount off-center-fed dipole antenna element and its array for 5G millimeter wave new radio applications," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 7, 1106-1114, Jul. 2021.
doi:10.1109/TCPMT.2021.3085860

11. Ali, M., et al. "Package-integrated, wideband power dividing networks and antenna arrays for 28-GHz 5G new radio bands," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 10, No. 9, 1515-1523, Sep. 2020.
doi:10.1109/TCPMT.2020.3013725

12. Wang, X., X. Liu, W. Zhang, D. Hao, and Y. Liu, "Surface-mount PIFA using ball grid array packaging for 5G mmWave," Progress In Electromagnetics Research Letters, Vol. 98, 55-60, 2021.
doi:10.2528/PIERL21050203

13. Li, M. and K. Luk, "A differential-fed UWB antenna element with unidirectional radiation," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3651-3656, Aug. 2016.
doi:10.1109/TAP.2016.2565726

14. Xue, Q., X. Y. Zhang, and C.-K. Chin, "A novel differential-fed patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 471-474, 2006.
doi:10.1109/LAWP.2006.885168