Vol. 106
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-24
Compensation Rotor Vibration of Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Using Variable Step Least Mean Square Adaptive Filter
By
Progress In Electromagnetics Research M, Vol. 106, 191-203, 2021
Abstract
An outer rotor coreless bearingless permanent magnet synchronous generator (ORC-BPMSG) has the characteristics of long service life, high efficiency, low noise, etc. However, the stability and reliability of the system and the output voltage are affected by the rotor vibration. In this paper, the step size and error of improved variable step least mean square (VSLMS) adaptive filter using improved simplified particle swarm optimization (ISPSO) is proposed, which suppresses the vibration of the rotor. The mathematical model and working principle of the ORC-BPMSG are introduced. The performances of improved VSLMS adaptive filter parameters are optimized by the improved SPSO algorithm, which generates a compensation signal to realize vibration compensation. The simulation system for the vibration compensation of the ORC-BPMSG is constructed, and dynamic suspension experiment and variable speed experiment of the rotor are carried out, which verify the robustness and stability of the proposed method.
Citation
Huangqiu Zhu, Kai Zhou, and Junqi Huan, "Compensation Rotor Vibration of Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Using Variable Step Least Mean Square Adaptive Filter," Progress In Electromagnetics Research M, Vol. 106, 191-203, 2021.
doi:10.2528/PIERM21100504
References

1. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Trans. Electric. Mach. Syst., Vol. 3, No. 1, 94-100, Mar. 2019.
doi:10.30941/CESTEMS.2019.00013

2. Jin, F., J. Si, Z. Cheng, P. Su, L. Dong, and G. Qi, "Optimization design of a novel toroidal-winding permanent magnet synchronous generator," 22nd Int. Conf. Electric. Mach. Syst. (ICEMS), 1-5, Harbin, China, 2019.

3. Yang, X., D. Patterson, and J. Hudgins, "Permanent magnet generator design and control for large wind turbines," 2012 IEEE Power Electric. Mach. Wind Appl., 1-5, Denver, USA, 2012.

4. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Trans. Electric. Mach. Syst., Vol. 3, No. 1, 94-100, Mar. 2019.
doi:10.30941/CESTEMS.2019.00013

5. Asama, J., A. Mouri, T. Oiwa, and A. Chiba, "Suspension force investigation for consequent-pole and surface-mounted permanent magnet bearingless motors with concentrated winding," 2015 IEEE Int. Electric Mach. Driv. Conf. (IEMDC), 780-785, Coeurd'Alene, ID, USA, 2015.

6. Li, H. and H. Zhu, "Design of bearingless flux-switching permanent magnet motor," IEEE Trans. Appl. Supercond., Vol. 26, No. 4, 1-5, Art no. 5202005, Jun. 2016.

7. Diao, X., H. Zhu, Y. Qin, and Y. Hua, "Torque ripple minimization for bearingless synchronous reluctance motor," IEEE Trans. Appl. Supercond., Vol. 28, No. 3, 1-5, Art no. 5205505, Apr. 2018.
doi:10.1109/TASC.2018.2798632

8. Zhu, H. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, May 2021.
doi:10.1109/TIE.2020.2984434

9. Tan, C., H. Wang, and Y. Wang, "Rotor eccentricity compensation of bearingless switched reluctance motors based on extended kalman filter," 2019 12th Int. Symp. Comput. Intell. Des. (ISCID), 111-115, Hangzhou, China, 2019.

10. Ye, X. and Z. Yang, "Development of bearingless induction motors and key technologies," IEEE Access, Vol. 7, 121055-121066, 2019.
doi:10.1109/ACCESS.2019.2937118

11. Zhu, H. and Y. Hu, "Research on operation principle and control of novel hybrid excitation bearingless permanent magnet generator," Energies, Vol. 9, No. 9, 673-689, Sep. 2016.
doi:10.3390/en9090673

12. Zhao, H. and C. Zhu, "Feedforward decoupling control for rigid rotor system of active magnetically suspended high-speed motors," IET Electr. Power Appl., Vol. 13, No. 9, 1298-1309, Sep. 2019.
doi:10.1049/iet-epa.2018.5824

13. Chuan, M. and Z. Changsheng, "Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm," IEEE Trans. Ind. Electron., Vol. 65, No. 5, 4177-4186, May 2018.
doi:10.1109/TIE.2017.2772144

14. Chen, Q., G. Liu, and B. Han, "Suppression of imbalance vibration in AMB-rotor systems using adaptive frequency estimator," IEEE Trans. Ind. Electron., Vol. 62, No. 12, 7696-7705, Dec. 2015.
doi:10.1109/TIE.2015.2455022

15. Zhu, H., Z. Yang, X. Sun, D. Wang, and X. Chen, "Rotor vibration control of a bearingless induction motor based on unbalanced force feed-forward compensation and current compensation," IEEE Access, Vol. 8, 12988-12998, 2020.
doi:10.1109/ACCESS.2020.2964106

16. Zhao, C., H. Zhu, Y. Du, J. Ju, and Y. Qin, "A novel bearingless flux-switching permanent magnet motor," 2016 IEEE Veh. Power Propuls. Conf. (VPPC), 1-5, Hangzhou, China, 2016.