Vol. 107
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-09
Combination of Dual-Model-Base Adaptive Sampling Algorithm and Adaptive Cross Approximation for Fast Computation of Broadband RCS
By
Progress In Electromagnetics Research M, Vol. 107, 65-77, 2022
Abstract
In this paper, a dual-model based adaptive sampling method is proposed for the fast calculation of broadband electromagnetic scattering. The difference between the rational function model (RFM) and cubic-spline (CS) based polynomial model issued to generate new frequency samples adaptively. Then, the cubic Hermite interpolation is used to approximate the final broadband RCS curve. The radar cross section (RCS) at each frequency sample is computed by the method of moment (MoM) which is accelerated by the adaptive cross approximation (ACA). Numerical results demonstrate that the proposed method is able to obtain the broadband RCS curve with high accuracy and reduce the computation time significantly. Compared with the method of moment and adaptive cross approximation method, the adaptive algorithm improves the computational efficiency by 77.13% in the sphere case, 83.79% in the rail model and nearly 90.72% in the missile example. In addition, the method proposed in this paper has the characteristics of nonuniform sampling and strong applicability and flexibility, which is able to combine other matrix compressed methods to effectively solve problems in electromagnetic field.
Citation
Ziyue Cheng, Yueyuan Zhang, Longfeng Xi, and Zhiwei Liu, "Combination of Dual-Model-Base Adaptive Sampling Algorithm and Adaptive Cross Approximation for Fast Computation of Broadband RCS," Progress In Electromagnetics Research M, Vol. 107, 65-77, 2022.
doi:10.2528/PIERM21111205
References

1. Lu, C. C. and W. C. Chew, "Fast algorithm for solving hybrid integral equations," IEEE Proceedings - H, Vol. 140, No. 6, 455-460, 1993.
doi:10.1049/ip-d.1993.0060

2. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, 1993.
doi:10.1109/9780470544631

3. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, 2008.

4. Seo, S. M., "A fast IE-FFT algorithm to analyze electrically large planar microstrip antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 983-987, Jun. 2018.
doi:10.1109/LAWP.2018.2828158

5. Liu, Y., X. Pan, and X. Sheng, "A fast algorithm for volume integral equation using interpolative decomposition and multilevel fast multipole algorithm," 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 519-522, 2016.

6. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

7. Zhao, K. Z., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

8. Liu, Z., X. Wang, D. Tang, Y. Zhang, S. Jie, and X. Liu, "MLFMA-ACA based method for efficient calculation of scattering from underground targets," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), 1-3, 2018.

9. Carpentieri, B., I. S. Duff, L. Giraud, et al. "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM Journal on Scientific Computing, Vol. 27, No. 3, 774-792, 2005.
doi:10.1137/040603917

10. Pan, X., W. Pi, M. Yang, Z. Peng, and X. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2571-2574, May 2012.
doi:10.1109/TAP.2012.2189746

11. Carpentieri, B., "Algebraic preconditioners for the fast multipole method in electromagnetic scattering analysis from large structures: Trends and problems," Electronic Journal of Boundary Elements, Vol. 7, No. 1, 2009.
doi:10.14713/ejbe.v7i1.952

12. Miller, E. K., "Using adaptive sampling to minimize the number of samples needed to represent a transfer function," IEEE Antennas and Propagation Society International Symposium. 1996 Digest, Vol. 1, 588-591, Baltimore, MD, USA, 1996.

13. Miller, E. K., "Adaptive sparse sampling to estimate radiation and scattering patterns to a specified uncertainty with model-based parameter estimation: Compute patterns using as few as two to four samples per lobe," IEEE Antennas and Propagation Magazine, Vol. 57, No. 4, 103-113, Aug. 2015.
doi:10.1109/MAP.2015.2453920

14. Cockrell, C. R. and F. B. Beck, "Asymptotic waveform evaluation (AWE) technique for frequency domain electromagnetic analysis," NASA Tech. Memo., 110292, Nov. 1996.

15. Wu, B. and X. Sheng, "Application of asymptotic waveform evaluation to hybrid FE-BI-MLFMA for fast RCS computation over a frequency band," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2597-2604, May 2013.
doi:10.1109/TAP.2013.2246532

16. Jeong, Y., I. Hong, H. Chun, Y. B. Park, Y. Kim, and J. Yook, "Fast analysis over a wide band using Chebyshev approximation with Clenshaw-Lord approximation," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 1353-1355, 2014.
doi:10.1109/EuCAP.2014.6902029

17. Monje-Real, A. and V. de la Rubia, "Electric field integral equation fast frequency sweep for scattering of nonpenetrable objects via the reduced-basis method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6232-6244, Aug. 2020.
doi:10.1109/TAP.2020.2992882

18. Wu, L., et al. "MLACE-MLFMA combined with reduced basis method for efficient wideband electromagnetic scattering from metallic targets," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4738-4747, Jul. 2019.
doi:10.1109/TAP.2019.2911352

19. Kong, W., J. Xie, F. Zhou, X. Yang, R. Wang, and K. Zheng, "An efficient FG-FFT with optimal replacement scheme and inter/extrapolation method for analysis of electromagnetic scattering over a frequency band," IEEE Access, Vol. 7, 127511-127520, 2019.
doi:10.1109/ACCESS.2019.2939484

20. Song, J. M. and W. C. Chew, "Broadband time-domain calculation using FISC," IEEE Antennas and Propagation Society International Symposium, 552, 2002.
doi:10.1109/APS.2002.1018273

21. Lu, C. C., "An extrapolation method based on current for rapid frequency and angle sweeps in far-field calculation in an integral equation algorithm," ACES Journal, Vol. 21, No. 1, 90-98, 2006.

22. Erdemli, Y. E., J. Gong, C. J. Reddy, and J. L. Volakis, "Fast RCS pattern fill using AWE technique," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 11, 1752-1753, Nov. 1998.
doi:10.1109/8.736639

23. Reddy, C. J., M. D. Deshpande, C. R. Cockrell, and F. B. Beck, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic waveform evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 8, 1229-1233, Aug. 1998.
doi:10.1109/8.718579

24. Chew, W. C., J. M. Song, E. Michielssen, et al. Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

25. Surma, M., "Efficient wideband analysis of electromagnetic scattering and radiation problems," 15th International Conference on Microwaves, Radar and Wireless Communications, 291-294, 2004.
doi:10.1109/MIKON.2004.1356922

26. Peng, Z. and X. Sheng, "A bandwidth estimation approach for the asymptotic waveform evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 913-917, Mar. 2008.
doi:10.1109/TAP.2008.917017

27. Lehmensiek, R. and P. Meyer, "An efficient adaptive frequency sampling algorithm for model-based parameter estimation as applied to aggressive space mapping," Microwave and Optical Technology Letters, Vol. 24, No. 1, 71-78, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<71::AID-MOP20>3.0.CO;2-O

28. Wu, L., Y. Zhao, Q. Cai, Z. Zhang, and J. Hu, "An adaptive segmented reduced basis method for fast interpolating the wideband scattering of the dielectric-metallic targets," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2235-2239, Dec. 2020.
doi:10.1109/LAWP.2020.3028455

29. Wu, J. W. and T. J. Cui, "Minimal rational interpolation and its application in fast broadband simulation," IEEE Access, Vol. 7, 177813-177826, 2019.
doi:10.1109/ACCESS.2019.2958369

30. Wang, X., H. Gong, S. Zhang, Y. Liu, R. Yang, and C. Liu, "Efficient RCS computation over a broad frequency band using subdomain MoM and chebyshev approximation technique," IEEE Access, Vol. 8, 33522-33531, 2020.
doi:10.1109/ACCESS.2020.2974070

31. Liu, Z. W., R. S. Chen, and J. Q. Chen, "Adaptive sampling cubic-spline interpolation method for efficient calculation of monostatic RCS," Microwave and Optical Technology Letters, Vol. 50, No. 3, 751-755, 2008.
doi:10.1002/mop.23211

32. Liu, Z. W., D. Z. Ding, Z. F. Fan, et al. "Adaptive sampling bicubic spline interpolation method for fast calculation of monostatic RCS," Microwave and Optical Technology Letters, Vol. 50, No. 7, 1851-1857, 2008.
doi:10.1002/mop.23540

33. Lehmensiek, R. and P. Meyer, "Creating accurate multivariate rational interpolation models of microwave circuits by using efficient adaptive sampling to minimize the number of computational electromagnetic analyses," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 8, 1419-1430, Aug. 2001.
doi:10.1109/22.939922

34. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818