1. Le-Ngoc, T. and A. Masmoudi, Full-duplex Wireless Communications Systems, Springer International Publishing, Cham, 2017, https://doi.org/10.1007/978-3-319-57690-9.
doi:10.1007/978-3-319-57690-9
2. Zhang, D., Z. Tian, and G. Wei, "Spatial capacity of narrowband vs. ultra-wideband cognitive radio systems," IEEE Trans. Wirel. Commun., Vol. 7, 4670-4680, 2008, https://doi.org/10.1109/T-WC.2008.070746.
doi:10.1109/T-WC.2008.070746 Google Scholar
3. Zhu, J. and S. S. Kia, "UWB ranging aided pedestrian geolocation with GPB-based filtering for LoS and NLoS measurement processing," 2020 IEEE ION Position Locat. Navig. Symp. PLANS, 781-787, IEEE, Portland, OR, USA, 2020, https://doi.org/10.1109/PLANS46316.2020.9110175. Google Scholar
4. Ling, R. W. C., A. Gupta, A. Vashistha, M. Sharma, and C. L. Law, "High precision UWB-IR indoor positioning system for IoT applications," 2018 IEEE 4th World Forum Internet Things WF-IoT, 135-139, IEEE, Singapore, 2018, https://doi.org/10.1109/WF-IoT.2018.8355162. Google Scholar
5. Yin, Z., X. Jiang, Z. Yang, N. Zhao, and Y. Chen, "WUB-IP: A high-precision UWB positioning scheme for indoor multiuser applications," IEEE Syst. J., Vol. 13, 279-288, 2019, https://doi.org/10.1109/JSYST.2017.2766690.
doi:10.1109/JSYST.2017.2766690 Google Scholar
6. Poulose, A., O. S. Eyobu, M. Kim, and D. S. Han, "Localization error analysis of indoor positioning system based on UWB measurements," 2019 Elev. Int. Conf. Ubiquitous Future Netw. ICUFN, 84-88, IEEE, Zagreb, Croatia, 2019, https://doi.org/10.1109/ICUFN.2019.8806041. Google Scholar
7. Kumar, A. R. A., A. Dutta, and B. D. Sahoo, "A low-power reconfigurable narrowband/wideband lna for cognitive radio-wireless sensor network," IEEE Trans. Very Large Scale Integr. VLSI Syst., Vol. 28, 212-223, 2020, https://doi.org/10.1109/TVLSI.2019.2939708.
doi:10.1109/TVLSI.2019.2939708 Google Scholar
8. Xie, H., Y. J. Cheng, and Y. Fan, "A K-band high interference-rejection GaAs low-noise amplifier using multizero control method for satellite communication," IEEE Microw. Wirel. Compon. Lett., Vol. 30, 1069-1072, 2020, https://doi.org/10.1109/LMWC.2020.3026075.
doi:10.1109/LMWC.2020.3026075 Google Scholar
9. Kim, S. H. and Y. C. Rhee, "Implementation of Ku-band low noise block for global multi-band digital satellite broadcasting," The Journal of the Korea Institute of Electronic Communication Sciences, Vol. 11, 23-28, 2016.
doi:10.13067/JKIECS.2016.11.1.23 Google Scholar
10. Marimuthu, J., K. S. Bialkowski, and A. M. Abbosh, "Software-defined radar for medical imaging," IEEE Trans. Microw. Theory Tech., 1-10, 2016, https://doi.org/10.1109/TMTT.2015.2511013.
doi:10.1109/TMTT.2015.2511013 Google Scholar
11. Ha, H. K., "CMOS ultrasonic analogue front-end with reconfigurable pulser/switch for medical imaging applications," Electronics Letters, Vol. 51, No. 20, 1564-1566, 2015.
doi:10.1049/el.2015.2440 Google Scholar
12. Stefigraf, I. and S. Rajaram, "Layout design of X-band low noise amplifier for radar applications," International Symposium on VLSI Design and Test, 140-156, Springer, Singapore, 2018, doi: 10.1007/978-981-13-5950-7 13. Google Scholar
13. Jeon, S.-Y., K. Nikitin, A. Dewantari, J. Kim, and M.-H. Ka, "Low-noise amplifier protection switch using p-i-n diodes with tunable open stubs for solid-state pulsed radar," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 1004-1006, 2017, https://doi.org/10.1109/LMWC.2017.2750029.
doi:10.1109/LMWC.2017.2750029 Google Scholar
14. Feng, C., X. P. Yu, Z. H. Lu, W. M. Lim, and W. Q. Sui, "3-10 GHz self-biased resistive-feedback LNA with inductive source degeneration," Electron. Lett., Vol. 49, 387-388, 2013, https://doi.org/10.1049/el.2012.4472.
doi:10.1049/el.2012.4472 Google Scholar
15. Shim, Y., C.-W. Kim, J. Lee, and S.-G. Lee, "Design of full band UWB common-gate LNA," IEEE Microw. Wirel. Compon. Lett., Vol. 17, 721-723, 2007, https://doi.org/10.1109/LMWC.2007.905633.
doi:10.1109/LMWC.2007.905633 Google Scholar
16. Kobayashi, K. W., D. Denninghoff, and D. Miller, "A novel 100 MHz-45 GHz input-termination-less distributed amplifier design with low-frequency low-noise and high linearity implemented with a 6 inch 0.15 mm GaN-SiC wafer process technology," IEEE J. Solid-State Circuits, Vol. 51, 2017-2026, 2016, https://doi.org/10.1109/JSSC.2016.2558488.
doi:10.1109/JSSC.2016.2558488 Google Scholar
17. Fukui, H., "Optimal noise figure of microwave GaAs MESFE," IEEE Transactions on Electron Devices, Vol. 26, No. 7, 1032-1037, Jul. 1979, doi: 10.1109/T-ED.1979.19541.
doi:10.1109/T-ED.1979.19541 Google Scholar
18. Iversen, S., "The effect of feedback on noise figure," Proc. IEEE, Vol. 63, 540-542, 1975, https://doi.org/10.1109/PROC.1975.9784.
doi:10.1109/PROC.1975.9784 Google Scholar
19. Friis, H. T., "Noise figures of radio receiver," Proceedings of the IRE, Vol. 32, 419-422, 1994, doi: 10.1109/JRPRO.1944.232049.
doi:10.1109/JRPROC.1944.232049 Google Scholar
20. Rollett, J., "Stability and power-gain invariants of linear two ports," IRE Trans. Circuit Theory, Vol. 9, 29-32, 1962, https://doi.org/10.1109/TCT.1962.1086854.
doi:10.1109/TCT.1962.1086854 Google Scholar
21. Edwards, M. L. and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," IEEE Trans. Microw. Theory Tech., Vol. 40, 2303-2311, 1992, https://doi.org/10.1109/22.179894.
doi:10.1109/22.179894 Google Scholar
22. Arekapudi, S., E. Iroaga, and B. Murmann, "A low-power distributed wide-band LNA in 0.18 μm CMOS," 2005 IEEE Int. Symp. Circuits Syst., 5055-5058, IEEE, Kobe, Japan, 2005, https://doi.org/10.1109/ISCAS.2005.1465770. Google Scholar
23. Ahn, K., R. Ishikawa, and K. Honjo, "Low noise group delay equalization technique for UWB InGaP/GaAs HBT LNA," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 7, 405-407, Jul. 2010, doi: 10.1109/LMWC.2010.2049441.
doi:10.1109/LMWC.2010.2049441 Google Scholar
24. Park, Y., C. Lee, J. D. Cressler, and J. Laskar, "The analysis of UWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation," IEEE Trans. Microw. Theory Tech., Vol. 54, 1687-1697, 2006, https://doi.org/10.1109/TMTT.2006.872000.
doi:10.1109/TMTT.2006.872000 Google Scholar
25. Chen, M. and J. Lin, "A 0.1-20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS," IEEE Microw. Wirel. Compon. Lett., Vol. 19, 323-325, 2009, https://doi.org/10.1109/LMWC.2009.2017608.
doi:10.1109/LMWC.2009.2017608 Google Scholar
26. Jarndal, A. H. and A. M. Bassal, "A broadband hybrid GaN cascode low noise amplifier for WiMax applications," International Journal of RF and Microwave Computer-aided Engineering, Vol. 2, 2018. Google Scholar
27. Jarndal, A., A. Hussein, G. Crupi, and A. Caddemi, "Reliable noise modeling of GaN HEMTs for designing low-noise amplifiers," Int. J. Numer. Model. Electron. Netw. Devices Fields, Vol. 33, 2020, https://doi.org/10.1002/jnm.2585. Google Scholar
28. El Bakkali, M., N. A. Touhami, and T.-E. Elhamadi, "High gain cascaded GaAs-pHEMT broadband planar low noise amplifier for WiMAX-80.16b application," WITS, 1101-1110, Springe, Singapore, 2022. Google Scholar