Vol. 121
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-07-22
Self-Dual Integral Equation for Scattering Analysis from Bodies of Revolution with Multiple Impedance Boundary Conditions
By
Progress In Electromagnetics Research C, Vol. 121, 207-220, 2022
Abstract
In this paper, electromagnetic scattering from multi-impedance body of revolutions (BORs) is formulated using self-dual integral equations (SDIEs) and is solved numerically by the method of moments using BOR basis functions. Using the axial symmetry advantage of BORs, a 3D problem is converted to a 2D one, and a significant reduction in unknowns is obtained. This in turn leads to an increase in the speed of scattering problem solving. Numerical results show that monostatic and bistatic RCS calculation with the proposed method is about 85 and 18 times faster than the commercial software, respectively.
Citation
Maryam Niknejad Mojtaba Maddah-Ali Ahmad Bakhtafrouz Mohsen Maddahali , "Self-Dual Integral Equation for Scattering Analysis from Bodies of Revolution with Multiple Impedance Boundary Conditions," Progress In Electromagnetics Research C, Vol. 121, 207-220, 2022.
doi:10.2528/PIERC22051904
http://www.jpier.org/PIERC/pier.php?paper=22051904
References

1. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2014.
doi:10.1201/b17119

2. Hoppe, D. J., Impedance Boundary Conditions in Electromagnetics, CRC Press, 2018.
doi:10.1201/9781315215365

3. Senior, T., "Impedance boundary conditions for statistically rough surfaces," Applied Scientific Research, Section B, Vol. 8, No. 1, 437-462, 1960.
doi:10.1007/BF02920075

4. Iskander, K., L. Shafai, A. Frandsen, and J. Hansen, "Application of impedance boundary conditions to numerical solution of corrugated circular horns," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 366-372, 1982.
doi:10.1109/TAP.1982.1142819

5. Senior, T., "Combined resistive and conductive sheets," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 5, 577-579, 1985.
doi:10.1109/TAP.1985.1143616

6. Mitzner, K., "Effective boundary conditions for reflection and transmission by an absorbing shell of arbitrary shape," IEEE Transactions on Antennas and propagation, Vol. 16, No. 6, 706-712, 1968.
doi:10.1109/TAP.1968.1139283

7. Lindell, I. V. and A. H. Sihvola, "Realization of impedance boundary," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3669-3676, 2006.
doi:10.1109/TAP.2006.886535

8. Yuferev, S. V. and N. Ida, Surface Impedance Boundary Conditions: A Comprehensive Approach, CRC Press, 2018.

9. Glisson, A. W., "Electromagnetic scattering by arbitrarily shaped surfaces with impedance boundary conditions," Radio Science, Vol. 27, No. 06, 935-943, 1992.
doi:10.1029/92RS01782

10. Sebak, A. and L. Shafai, "Scattering from arbitrarily-shaped objects with impedance boundary conditions," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 136, No. 5, 371-376, IET, 1989.
doi:10.1049/ip-h-2.1989.0067

11. Heath, G., "Impedance boundary condition integral equations," 1984 Antennas and Propagation Society International Symposium, Vol. 22, 697-700, IEEE, 1984.
doi:10.1109/APS.1984.1149232

12. Yla-Oijala, P., S. P. Kiminki, and S. Jarvenpaa, "Solving IBC-CFIE with dual basis functions," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3997-4004, 2010.
doi:10.1109/TAP.2010.2078473

13. Chang, A., K. Yee, and J. Prodan, "Comparison of different integral equation formulations for bodies of revolution with anisotropic surface impedance boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, 989-991, 1992.
doi:10.1109/8.163439

14. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105

15. Bendali, A., M. Fares, and J. Gay, "A boundary-element solution of the Leontovitch problem," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 10, 1597-1605, 1999.
doi:10.1109/8.805905

16. Chang, A., K. Yee, and J. Prodan, "Comparison of different integral equation formulations for bodies of revolution with anisotropic surface impedance boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, 989-991, 1992.
doi:10.1109/8.163439

17. Collard, B., M. Fares, and B. Souny, "A new formulation for scattering by impedant 3D bodies," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1291-1298, 2006.
doi:10.1163/156939306779276785

18. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105

19. Yla-Oijala, P., S. P. Kiminki, and S. Jarvenpaa, "Solving IBC-CFIE with dual basis functions," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3997-4004, 2010.
doi:10.1109/TAP.2010.2078473

20. Yan, S. and J.-M. Jin, "Self-dual integral equations for electromagnetic scattering from ibc objects," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5533-5546, 2013.
doi:10.1109/TAP.2013.2276929

21. Mautz, J. R. and R. Harrington, "Radiation and scattering from bodies of revolution," Applied Scientific Research, Vol. 20, No. 1, 405-435, 1969.
doi:10.1007/BF00382412

22. Wu, T.-K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, No. 5, 709-718, 1977.
doi:10.1029/RS012i005p00709

23. Yuceer, M., J. R. Mautz, and E. Arvas, "Method of moments solution for the radar cross section of a chiral body of revolution," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 1163-1167, 2005.
doi:10.1109/TAP.2004.842664

24. Bao, J., D. Wang, and E. K. Yung, "Electromagnetic scattering from an arbitrarily shaped biisotropic body of revolution," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1689-1698, 2010.
doi:10.1109/TAP.2010.2044313