Vol. 112
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-08-04
Iron Loss Calculation in Switched Reluctance Motor Based on Flux Integral Path Method
By
Progress In Electromagnetics Research M, Vol. 112, 151-161, 2022
Abstract
In this paper, a new fast and accurate method, the Flux Integral Path (FIP) method, is proposed for switched reluctance motor (SRM) to analyze the iron loss. The magnetic flux generated by the stator poles is integrated over a period of time, then, the eddy current loss and the hysteresis loss of the whole SRM can be directly calculated by analyzing the path distribution of the flux closed loop without dividing the motor into four blocks (stator pole, stator yoke, rotor pole and rotor yoke). The concept of flux flow is introduced to calculate the eddy current loss, and the piecewise linear fitting of flux density curve in the period is used to approximate the differential and simplify the hysteresis loss calculation. The FIP method can be well applied to non-sinusoidal and nonlinear magnetic density of SRM because of the combination of Finite Element Analysis (FEA) simulation. Furthermore, the loss separation model and the Fast Fourier Transform (FFT) method were compared with the FIP method of the iron loss calculation, and the 2D FEA simulation results were used to verify the method proposed in this paper.
Citation
Kuo Li, Aide Xu, Bing Leng, Yang Yang, and Jinghao Sun, "Iron Loss Calculation in Switched Reluctance Motor Based on Flux Integral Path Method," Progress In Electromagnetics Research M, Vol. 112, 151-161, 2022.
doi:10.2528/PIERM22061306
References

1. Hu, J., Y. Wang, H. Fujimoto, and Y. Hori, "Robust yaw stability control for in-wheel motor electric vehicles," IEEE-ASME Trans. Mechatron., Vol. 22, No. 3, 1360-1370, June 2017.
doi:10.1109/TMECH.2017.2677998

2. Valdivia, V., R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, "Behavioral modeling of a switched reluctance generator for aircraft power systems," IEEE Trans. Ind. Electron., Vol. 61, No. 6, 2690-2699, June 2014.
doi:10.1109/TIE.2013.2276768

3. Li, Z., X. Yu, Z. Qian, X. Wang, Y. Xiao, and H. Sun, "Generation characteristics analysis of deflection type double stator switched reluctance generator," IEEE Access, Vol. 8, 196175-196186, 2020.
doi:10.1109/ACCESS.2020.3034467

4. Yamazaki, K. and K. Kanbayashi, "Shape optimization of induction machines by using combination of frequency- and time-domain finite element methods," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2185-2188, May 2013.
doi:10.1109/TMAG.2013.2244588

5. Mthombeni, L. T., P. Pillay, and N. A. Singampalli, "Lamination core loss measurements in machines operating with PWM or nonsinusoidal excitation," IEEE International Electric Machines and Drives Conference 2003, IEMDC'03, Vol. 2, 742-746, 2003.
doi:10.1109/IEMDC.2003.1210319

6. Lavers, J., P. Biringer, and H. Hollitscher, "A simple method of estimating the minor loop hysteresis loss in thin laminations," IEEE Transactions on Magnetics, Vol. 14, No. 5, 386-388, September 1978.
doi:10.1109/TMAG.1978.1059858

7. Hayashi, Y. and T. J. E. Miller, "A new approach to calculating core losses in the SRM," IEEE Trans. Ind. Appl., Vol. 31, No. 5, 1039-1046, September-October 1995.
doi:10.1109/28.464517

8. Ganji, B., Z. Mansourkiaee, and J. Faiz, "A fast general core loss model for switched reluctance machine," Energy, Vol. 89, 100-105, 2015.
doi:10.1016/j.energy.2015.07.058

9. Faiz, J., B. Ganji, C. E. Carstensen, and R. W. De Doncker, "Loss prediction in switched reluctance motors using finite element method," Eur. Trans. Electr. Power, Vol. 19, No. 5, 731-748, July 2009.
doi:10.1002/etep.252

10. Bouchnaifa, J., K. GrariaAnas, A. Benslimaneb, and F. Jeffali, "Analytical approach and thermal signature of Switched reluctance motor iron losses," Materials Today: Proceedings, Vol. 27, No. 4, 3161-3166, 2020.
doi:10.1016/j.matpr.2020.04.031

11. Shen, W., F. Wang, D. Boroyevich, and C. W. Tipton, "Loss characterization and calculation of nanocrystalline cores for high-frequency magnetics applications," IEEE Trans. Power Electron., Vol. 23, No. 1, 475-484, January 2008.
doi:10.1109/TPEL.2007.911881

12. Yu, Q., B. Bilgin, and A. Emadi, "Loss and efficiency analysis of switched reluctance machines using a new calculation method," IEEE Trans. Ind. Electron., Vol. 62, No. 5, 3072-3080, May 2015.
doi:10.1109/TIE.2015.2392716

13. Yan, W., H. Chen, Y. Liu, and C. Chan, "Iron loss and temperature analysis of switched reluctance motor for electric vehicles," IET Electr. Power Appl., Vol. 14, No. 11, 2119-2127, 2020.
doi:10.1049/iet-epa.2020.0166

14. Shahriari Nasab, P., M. Moallem, E. Shirani Chaharsoghi, C. Caicedo-Narvaez, and B. Fahimi, "Predicting temperature profile on the surface of a switched reluctance motor using a fast and accurate magneto-thermal model," IEEE Trans. Energy Convers., Vol. 35, No. 3, 1394-1401, September 2020.
doi:10.1109/TEC.2020.2974789

15. Sixdenier, F., L. Morel, and J. P. Masson, "Introducing dynamic behavior of magnetic materials into a model of a switched reluctance motor drive," IEEE Transactions on Magnetics, Vol. 42, No. 3, 398-404, March 2006.
doi:10.1109/TMAG.2005.862757

16. Petrea, L., C. Demian, J. F. Brudny, and T. Belgrand, "High-frequency harmonic effects on low-frequency iron losses," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1-4, November 2014.
doi:10.1109/TMAG.2014.2332431

17. Yang, L., C. Liu, and J. Yan, "A study on iron loss finite element analysis of switched reluctance motor based on a double-frequency method," Proceedings of the CSEE, Vol. 26, No. 12, 117-121, June 2006.