Vol. 109
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-01-29
SVD Compression and Energy Harvesting Based Energy Efficient 3D-MI-UWSNs
By
Progress In Electromagnetics Research Letters, Vol. 109, 15-22, 2023
Abstract
In underwater wireless sensor networks (UWSNs), the limited availability and non-rechargeability of sensor node batteries necessitated the advancement of energy optimization techniques. Optimal clustering is one such technique that reduces the energy consumption of the networks. In this letter, we propose optimal cluster compression technique jointly with energy harvesting. In optimal clustering compression, we perform optimal clustering of networks with singular value decomposition (SVD) as compression technique to reduce the redundant data generated at the cluster heads (CHs). Besides, adopting energy harvesting technique, node batteries are periodically recharged. The performance of the proposed model is evaluated in terms of network lifetime and throughput.
Citation
Sadanand Yadav, and Vinay Kumar, "SVD Compression and Energy Harvesting Based Energy Efficient 3D-MI-UWSNs ," Progress In Electromagnetics Research Letters, Vol. 109, 15-22, 2023.
doi:10.2528/PIERL22120219
References

1. Akyildiz, I. F., P. Wang, and Z. Sun, "Realizing underwater communication through magnetic induction," IEEE Communications Magazine, Vol. 53, No. 11, 42-48, 2015.
doi:10.1109/MCOM.2015.7321970

2. Sharma, A. K., S. Yadav, S. N. Dandu, V. Kumar, and J. Sengupta, "Magnetic induction-based non-conventional media communications: A review," IEEE Sensors Journal, Vol. 17, No. 4, 926-940, 2016.

3. Yadav, S., V. Kumar, S. B. Dhok, and D. N. K. Jayakody, "Energy-efficient design of MI communication-based 3-D non-conventional WSNs," IEEE Systems Journal, Vol. 14, No. 2, 2585-2588, 2019.
doi:10.1109/JSYST.2019.2918184

4. Kumar, V., S. Yadav, A. Sharma, A. Prakash, R. Tripathi, and D. N. K. Jayakody, "3D-multilayer magneto-inductive transceiver coil structure and optimal placement of relays for non-conventional media," Wireless Networks, Vol. 28, 2115-2129, Springer, 2022.
doi:10.1007/s11276-022-02949-3

5. Liu, Y., S. Gong, Q. Liu, and M. Hou, "A mechanical transmitter for undersea magnetic induction communication," IEEE Transactions on Antennas and Propagation, Vol. 69, 6391-6400, 2022.

6. Kumar, V., R. Bhusari, S. B. Dhok, A. Prakash, R. Tripathi, and S. Tiwari, "Design of magnetic induction based energy-efficient WSNs for non-conventional media using multi-layer transmitter-enabled novel energy model," IEEE Systems Journal, Vol. 13, No. 2, 1285-1296, 2018.
doi:10.1109/JSYST.2018.2852487

7. Gulbahar, B. and O. B. Akan, "A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels," IEEE Transactions on Wireless Communications, Vol. 11, No. 9, 3326-3334, 2012.
doi:10.1109/TWC.2012.070912.111943

8. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858

9. Paek, J. and J. Ko, "K-means clustering-based data compression scheme for wireless imaging sensor networks," IEEE Systems Journal, Vol. 11, No. 4, 2652-2662, 2015.
doi:10.1109/JSYST.2015.2491359

10. Wang, S., T. L. N. Nguyen, and Y. Shin, "Data collection strategy for magnetic induction based monitoring in underwater sensor networks," IEEE Access, Vol. 6, 43644-43653, 2018.
doi:10.1109/ACCESS.2018.2861946

11. Ghoreyshi, S. M., A. Shahrabi, T. Boutaleb, and M. Khalily, "Mobile data gathering with hop-constrained clustering in underwater sensor networks," IEEE Access, Vol. 7, 21118-21132, 2019.
doi:10.1109/ACCESS.2019.2897872

12. Rufai, A. M., G. Anbarjafari, and H. Demirel, "Lossy image compression using singular value decomposition and wavelet difference reduction," Digital Signal Processing, Vol. 24, 117-123, Elsevier, 2014.

13. Amini, N., A. Vahdatpour, W. Xu, and M. Gerla, "Cluster size optimization in sensor networks with decentralized cluster-based protocols," Computer Communications, Vol. 35, 207-220, Elsevier, 2012.

14. Vermaak, H. J., K. Kusakana, and S. P. Koko, "Status of micro-hydro-kinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Vol. 29, 625-633, Elsevier, 2014.

15. Pobering, S. and N. Schwesinger, "A novel hydropower harvesting device," 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04), 480-485, IEEE, 2004.
doi:10.1109/ICMENS.2004.1508997