Vol. 136
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-10
Miniaturized Low-Loss Band Pass Filter Based on Coupling Effect of Defective Structures for Ultra Broad Band Applications
By
Progress In Electromagnetics Research C, Vol. 136, 37-50, 2023
Abstract
In this paper, a compact, symmetric, simple, and highly selective Ultra Broad Band (UBB) Band Pass Filter (BPF) is constructed on a low-loss Taconic dielectric substrate. The top layer of the BPF is loaded with three headphone-shaped Defected Microstrip Structures (DMSs) and four Open Circuit (OC) stubs whereas the bottom layer is etched with three star-shaped Defected Ground Structures (DGSs). The proposed BPF is designed and simulated using High-Frequency Structure Simulator (HFSS) software at f0. The proposed BPF shows 20 dB return loss and 0.4 dB insertion loss in the 3 dB passband covering 0.52 GHz to 17.1 GHz owing to 16.58 GHz Band Width (BW). Additionally, 10 dB and 25 dB upper stopband rejection is achieved with 1.3 GHz and 1 GHz BW respectively. Maximum group delay of the simulated filter is about 2.95 ns. The fabricated model transmits from 0.8 GHz to 17.4 GHz which in turn offers a 16.6 GHz BW at 3 dB level. The reflection coefficient of the fabricated filter is about -18 dB, and insertion loss varies from 0 dB to 0.72 dB inside the Transmission Band (TB) with a Fractional Band Width (FBW) of 178.5% and 3.35 ns maximum group delay. Moreover, the occurrence of Transmission Zeroes (TZs) and Reflection Poles (RPs) make the filter highly selective and low-loss (flatness). The measured results agree with the simulated outputs with slight deviations due to fabrication tolerances and connector loss. The size of the filter is 0.36λg * 0.36λg. Thus proposed filter is suitable for mobile phones, and satellite communication applications approximately covering L, S, C, X, and Ku frequency bands.
Citation
Mani Divya Shree, and Inabathini Srinivasa Rao, "Miniaturized Low-Loss Band Pass Filter Based on Coupling Effect of Defective Structures for Ultra Broad Band Applications," Progress In Electromagnetics Research C, Vol. 136, 37-50, 2023.
doi:10.2528/PIERC23053001
References

1. Min, B. C., Y. H. Choi, S. K. Kim, and B. Oh, "Cross-coupled band-pass filter using HTS microstrip resonators," IEEE Trans. Appl. Supercond., Vol. 11, No. 1, 485-488, 2001.
doi:10.1109/77.919388

2. Bonache, J., I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 265-271, 2006.
doi:10.1109/TMTT.2005.861664

3. Wu, B., C. H. Liang, P. Y. Qin, and Q. Li, "Compact dual-band filter using defected stepped impedance resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 10, 674-676, 2008.
doi:10.1109/LMWC.2008.2003459

4. Sun, S., "A dual-band bandpass filter using a single dual-mode ring resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 6, 298-300, 2011.
doi:10.1109/LMWC.2011.2132119

5. Shen, W., W. Y. Yin, X. W. Sun, and L. S. Wu, "Substrate-integrated waveguide bandpass filters with planar resonators for system-on-package," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 2, 253-261, 2012.
doi:10.1109/TCPMT.2012.2224348

6. Park, J. S., J. S. Yun, and D. Ahn, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2037-2043, 2002.
doi:10.1109/TMTT.2002.802313

7. Abdel-Rahman, A., A. K. Verma, A. Boutejdar, and A. S. Omar, "Compact stub type microstrip bandpass filter using defected ground plane," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 4, 136-138, 2004.
doi:10.1109/LMWC.2003.821503

8. Tan, B. T., J. J. Yu, S. T. Chew, M. S. Leong, and B. L. Ooi, "A miniaturized dual-mode ring bandpass filter with a new perturbation," IEEE Microw. Wirel. Compon. Lett., Vol. 53, No. 1, 343-348, 2005.

9. El-Shaarawy, H. B., F. Coccetti, R. Plana, M. El Said, and E. A. Hashish, "Compact bandpass ring resonator filter with enhanced wide-band rejection characteristics using defected ground structures," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 8, 500-502, 2008.
doi:10.1109/LMWC.2008.2000998

10. Hamad, E. K., A. M. Safwat, and A. S. Omar, "Controlled capacitance and inductance behaviour of L-shaped defected ground structure for coplanar waveguide," IEE Proc.: Microw., Antennas and Prop., Vol. 152, No. 5, 299-304, 2005.
doi:10.1049/ip-map:20045166

11. Lee, J. K. and Y. S. Kim, "Ultra-wideband bandpass filter with improved upper stopband performance using defected ground structure," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 6, 316-318, 2010.
doi:10.1109/LMWC.2010.2047469

12. Zhou, J., Y. Rao, D. Yang, H. J. Qian, and X. Luo, "Compact wideband BPF with wide stopband using substrate integrated defected ground structure," IEEE Microw. Wirel. Compon. Lett., Vol. 31, No. 4, 353-356, 2021.
doi:10.1109/LMWC.2021.3053756

13. Wang, C., X. Zhang, T. Xia, Y. Zhang, and Q. Fan, "Dual-band filter power divider with controllable transmission zero based on multimode resonator," Progress In Electromagnetics Research Letters, Vol. 105, 9-16, 2022.
doi:10.2528/PIERL22040901

14. Tu, W. H., "Compact low-loss reconfigurable bandpass filter with switchable bandwidth," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 4, 208-210, 2010.
doi:10.1109/LMWC.2010.2042553

15. Hou, Z. J., Y. Yang, X. Zhu, Y. C. Li, E., Dutkiewicz, and Q. Xue, "A compact and low-loss bandpass filter using self-coupled folded-line resonator with capacitive feeding technique," IEEE Electron Device Lett., Vol. 39, No. 10, 1584-1587, 2018.

16. Wang, Z., J. Ma, S. Zhao, H. Liu, and S. Fang, "A novel DGS-based substrate integrated coaxial line bandpass filter with three transmission zeros," Progress In Electromagnetics Research Letters, Vol. 105, 1-8, 2022.

17. Tirado-Mendez, J. A., H. Jardon-Aguilar, R. Flores-Leal, E. Andrade-Gonzalez, and F. Iturbide-Sanchez, "Improving frequency response of microstrip filters using defected ground and defected microstrip structures," Progress In Electromagnetics Research C, Vol. 13, 77-90, 2010.
doi:10.2528/PIERC10011505

18. Hanae, E., N. A. Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.

19. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon Puente, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302

20. Hong, J. S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Hoboken, 2004.

21. Kim, C. S., J. S. Park, D. Ahn, and J. B. Lim, "A novel 1-D periodic defected ground structure for planar circuits," IEEE Microw. and Guided Wave Lett., Vol. 10, No. 4, 131-133, 2000.
doi:10.1109/75.846922

22. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

23. Wang, M., S. Sun, H. F. Ma, and T. J. Cui, "Supercompact and ultrawideband surface plasmonic bandpass filter," IEEE Trans. Microw. Theory Tech., Vol. 68, No. 2, 732-740, 2019.
doi:10.1109/TMTT.2019.2952123

24. Bandyopadhyay, A., P. Sarkar, and R. Ghatak, "A bandwidth reconfigurable bandpass filter for ultrawideband and wideband applications," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 69, No. 6, 2747-2751, 2022.

25. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "All-metal wideband frequency-selective surface bandpass filter for TE and TM polarizations," IEEE Trans. Antennas Propag., Vol. 70, No. 4, 2790-2800, 2022.
doi:10.1109/TAP.2021.3138256

26. Zhang, T., M. Tian, Z. Long, M. Qiao, and Z. Fu, "High-temperature superconducting multimode ring resonator ultrawideband bandpass filter," IEEE Microw. Wirel. Compon. Lett., Vol. 28, No. 8, 663-665, 2018.
doi:10.1109/LMWC.2018.2845116

27. Long, Z., M. Tian, T. Zhang, M. Qiao, T. Wu, and Y. Lan, "High-temperature superconducting multimode dual-ring UWB bandpass filter," IEEE Trans. Appl. Supercond., Vol. 30, No. 2, 1-4, 2019.
doi:10.1109/TASC.2019.2951745

28. Li, C., Z. H. Ma, J. X. Chen, M. N. Wang, and J. M. Huang, "Design of a compact ultra-wideband microstrip bandpass filter," Electronics, Vol. 12, No. 7, 1728, 2023.
doi:10.3390/electronics12071728

29. Lin, D. B., M. H. Wang, A. A. Pramudita, and T. Adiprabowo, "Design of a novel ultra-wideband common-mode filter using a magnified coupled defected ground structure," Appl. Sci., Vol. 13, No. 13, 7404, 2023.
doi:10.3390/app13137404