1. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020.
doi:10.1109/ACCESS.2020.3020952
2. Ericson, "Leveraging the potential of 5G millimeter wave,", https://www.ericsson.com/en/reports-and-papers/further-insights/leveraging-the-potential-of-5g-millimeter-wave.
3. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813
4. Gibson, P. J., "The Vivaldi aerial," 1979 9th European Microwave Conference, 101-105, 1979.
doi:10.1109/EUMA.1979.332681
5. Gjokaj, V., J. Papapolymerou, J. D. Albrecht, B. Wright, and P. Chahal, "A compact receive module in 3-D printed Vivaldi antenna," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 10, No. 2, 343-346, Feb. 2020.
doi:10.1109/TCPMT.2019.2961345
6. Shan, J., A. Xu, and J. Lin, "A parametric study of microstrip-fed Vivaldi antenna," 3rd IEEE International Conference on Computer and Communications (ICCC), 1099-1103, 2017.
7. Li, Z., C. Yin, and X. Zhu, "Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019.
doi:10.1109/ACCESS.2019.2906338
8. Li, Q. and Y. Sun, "A high isolation UWB MIMO antenna based on angle diversity," 2020 IEEE MTT-S International Wireless Symposium (IWS), 1-3, 2020.
9. Arezoomand, A., et al., "Photonic band gap implementation for phase centre controlling in Vivaldi antenna," IET Microwaves, Antennas & Propagation, Vol. 11, No. 13, 1880-1886, 2017.
doi:10.1049/iet-map.2017.0010
10. Hatami, A., A. S. Arezomand, and F. B. Zarrabi, "Phase center controlling in Vivaldi antenna: Review and development of the story," Journal of Computational Electronics, Vol. 19, 736-749, 2020.
doi:10.1007/s10825-020-01463-z
11. Poorgholam-Khanjari, S. and F. B. Zarrabi, "Reconfigurable Vivaldi THz antenna based on graphene load as hyperbolic metamaterial for skin cancer spectroscopy," Optics Communications, Vol. 480, 126482, 2021.
doi:10.1016/j.optcom.2020.126482
12. Elsheakh, D. M. and E. A. Abdallah, "Ultrawideband Vivaldi antenna for DVB-T, WLAN and WiMAX applications," International Journal of Antennas and Propagation, Vol. 2014, 2014.
13. Zhu, Y., D. Su, W. Xie, Z. Liu, and K. Zuo, "Design of a novel miniaturized Vivaldi antenna with loading resistance for Ultra Wideband (UWB) applications," ACES Journal, Vol. 32, No. 10, 895-900, Jul. 2021.
14. Paul, L. C. and Md. M. Islam, "A super wideband directional compact Vivaldi antenna for lower 5G satellite applications," International Journal of Antennas and Propagation, 2021.
15. Hasan, Md. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019.
doi:10.1080/09205071.2019.1617790
16. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303
17. Ali, W., S. Das, H. Medkour, and S. Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsystem Technologies, Vol. 27, 283-292, 2021.
doi:10.1007/s00542-020-04951-1
18. Mallat, N. K., M. Nouri, S. A. Aghdam, M. T. Zia, B. Harb, and A. Jafarieh, "A dual circularly reconfigurable polarization patch antenna for fifth generation mobile communication systems," Progress In Electromagnetics Research C, Vol. 105, 73-84, 2020.
doi:10.2528/PIERC20053002
19. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) Yagi-Uda antenna with corrugated radiator and triangular reflectors for 5G mobile phones," The Applied Computational Electromagnetics Society Journal (ACES), 1325-1334, 2021.
20. El-Hassan, M. A., K. F. A. Hussein, and A. E. Farahat, "Compact dual-band (28/38 GHz) patch for MIMO antenna system of polarization diversity," The Applied Computational Electromagnetics Society Journal (ACES), 716-725, 2022.
21. Farahat, A. E. and K. F. A. Hussein, "Dual-band (28/38 GHz) wideband MIMO antenna for 5G mobile applications," IEEE Access, Vol. 10, 32213-32223, 2022.
doi:10.1109/ACCESS.2022.3160724
22. Hussain, M., et al., "Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-wave applications," Micromachines, Vol. 13, No. 11, 1918, 2022.
doi:10.3390/mi13111918
23. Tadesse, A. D., O. P. Acharya, and S. Sahu, "A compact planar four-port MIMO antenna for 28/38 GHz millimeter-wave 5G applications," Advanced Electromagnetics, Vol. 11, No. 3, 16-25, 2022.
doi:10.7716/aem.v11i3.1947
24. Sabek, A. R., W. A. E. Ali, and A. A. Ibrahim, "Minimally coupled two-element MIMO antenna with dual band (28/38 GHz) for 5G wireless communications," Journal of Infrared, Millimeter, and Terahertz Waves, 1-14, 2022.
25. Esmail, B. A. and S. Koziel, "High isolation metamaterial-based dual-band MIMO antenna for 5G millimeter-wave applications," AEU --- International Journal of Electronics and Communications, Vol. 158, 154470, 2023.
doi:10.1016/j.aeue.2022.154470
26. Ikram, M., N. Nguyen-Trong, and A. M. Abbosh, "Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices," IEEE Access, Vol. 7, 159112-159118, 2019.
doi:10.1109/ACCESS.2019.2950660
27. Khalid, M., et al., "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071
28. Jaiswal, P. K., R. Bhattacharya, and A. Kumar, "A UWB antipodal Vivaldi antenna with high gain using metasurface and notches," AEU --- International Journal of Electronics and Communications, Vol. 159, 154473, 2023.
doi:10.1016/j.aeue.2022.154473
29. Tebache, S., A. Belouchrani, F. Ghanem, and A. Mansoul, "Novel reliable and practical decoupling mechanism for strongly coupled antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 5892-5899, Sept. 2019.
doi:10.1109/TAP.2018.2885457
30. Fritz-Andrade, E., H. Jardon-Aguilar, and J. A. Tirado-Mendez, "The correct application of total active re ection coefficient to evaluate MIMO antenna systems and its generalization to N ports," International J. of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, e22113, 2020.
doi:10.1002/mmce.22113
31. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, No. 9-10, 415-427, 2018.
doi:10.1515/freq-2017-0276
32. Kumar, A., et al., "A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 1: DGSs and parasitic structures," Radio Science, Vol. 56, No. 3, 1-25, 2021.
33. Khalid, M., et al., "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071
34. Subitha, D., et al., "Development of Rogers RT/Duroid 5880 substrate-based MIMO antenna array for automotive radar applications," Advances in Materials Science and Engineering, Vol. 2022, 2022.