1. Duan, Xin, Xing Chen, Yonghong Zhou, Lin Zhou, and Shuji Hao, "Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1617-1621, 2018. Google Scholar
2. Shou, Y., Y. Feng, Y. Zhang, H. Chen, and H. Qian, "Deep learning approach based optical edge detection using ENZ layers," Progress In Electromagnetics Research, Vol. 175, 81-89, 2022. Google Scholar
3. Hu, Z., N. He, Y. Sun, Y. Jin, and S. He, "Wideband high-reflection chiral dielectric metasurface," Progress In Electromagnetics Research, Vol. 172, 51-60, 2021. Google Scholar
4. Huang, M., B. Zheng, T. Cai, X. Li, J. Liu, C. Qian, and H. Chen, "Machine–learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, No. 9, 2001-2010, 2022. Google Scholar
5. Lu, H., J. Zhao, B. Zhen, C. Qian, T. Cai, E. Li, and H. Chen, "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Vol. 14, No. 1, 3301, 2023. Google Scholar
6. Huang, H. F. and H. Huang, "Millimeter-wave wideband high efficiency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022. Google Scholar
7. Lu, H., B. Zheng, T. Cai, C. Qian, Y. Yang, Z. Wang, and H. Chen, "Frequency‐controlled focusing using achromatic metasurface," Advanced Optical Materials, Vol. 9, No. 1, 2001311, 2021. Google Scholar
8. Hao, H., X. Ran, Y. Tang, S. Zheng, and W. Ruan, "A single-layer focusing metasurface based on induced magnetism," Progress In Electromagnetics Research, Vol. 172, 77-88, 2021. Google Scholar
9. Zheng, B., H. Lu, C. Qian, D. Ye, Y. Luo, and H. Chen, "Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks," Electromagnetic Science, Vol. 1, No. 2, 0020092, 2023. Google Scholar
10. Cai, T., B. Zheng, J. Lou, L. Shen, Y. Yang, S. Tang, E. Li, C. Qian, and H. Chen, "Experimental realization of a superdispersion-enabled ultrabroadband terahertz cloak," Advanced Materials, Vol. 34, No. 47, 2205053, 2022. Google Scholar
11. Tan, Q., B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, and H. Chen, "Broadband spin‐locked metasurface retroreflector," Advanced Science, Vol. 9, No. 20, 2201397, 2022. Google Scholar
12. Singh, V. K., A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, "Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite," Carbon, Vol. 50, No. 6, 2202-2208, 2012. Google Scholar
13. Li, L., R. Xi, H. Liu, and Z. Lv, "Broadband polarization-independent and low-profile optically transparent metamaterial absorber," Applied Physics Express, Vol. 11, No. 5, 052001, 2018. Google Scholar
14. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006. Google Scholar
15. Zhang, Y., Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, "Broadband and tunable high‐performance microwave absorption of an ultralight and highly compressible graphene foam," Advanced Materials, Vol. 27, No. 12, 2049-2053, 2015. Google Scholar
16. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, 1988. Google Scholar
17. Du Toit, L. J. , "The design of jauman absorbers," IEEE Antennas and Propagation Magazine, Vol. 36, No. 6, 17-25, 1994. Google Scholar
18. Jaggard, D. L., N. Engheta, and J. Liu, "Chiroshield: A Salisbury/Dallenbach shield alternative," Electronics Letters, Vol. 26, No. 17, 1332-1334, 1990. Google Scholar
19. Li, S. J., P. X. Wu, H. X. Xu, Y. L. Zhou, X. Y. Cao, J. F. Han, C. Zhang, H. H. Yang, and Z. Zhang, "Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects," Nanoscale Research Letters, Vol. 13, No. 1, 386, 2018. Google Scholar
20. Hu, X., G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, "Metamaterial absorber integrated microfluidic terahertz sensors," Laser & Photonics Reviews, Vol. 10, No. 6, 962-969, 2016. Google Scholar
21. Park, S. J., S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC Advances, Vol. 6, No. 73, 69381-69386, 2016. Google Scholar
22. Ge, J., Y. Zhang, H. Li, H. Dong, and L. Zhang, "Ultra-broadband, tunable, and transparent microwave meta-absorber using ITO and water substrate," Advanced Optical Materials, Vol. 11, No. 10, 2202873, 2023. Google Scholar
23. Rybin, M. V., D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, "Phase diagram for the transition from photonic crystals to dielectric metamaterials," Nature Communications, Vol. 6, No. 1, 10102, 2015. Google Scholar
24. Odit, M., P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, "Experimental demonstration of water based tunable metasurface," Applied Physics Letters, Vol. 109, No. 1, 011901, 2016. Google Scholar
25. Feng, M., X. Tian, J. Wang, M. Yin, S. Qu, and D. Li, "Broadband abnormal reflection based on a metal-backed gradient index liquid slab: An alternative to metasurfaces," Journal of Physics D: Applied Physics, Vol. 48, No. 24, 245501, 2015. Google Scholar
26. Tiwari, Priyanka and Surya Kumar Pathak, "Design and simulation of a water based polarization-insensitive and wide incidence dielectric metasurface absorber for X-, Ku- and K-band," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 692-695, 2021.
27. Tan, X., J. Chen, J. Li, and S. Yan, "Water-based metasurface with continuously tunable reflection amplitude," Optics Express, Vol. 30, No. 5, 6991-6998, 2022. Google Scholar
28. Kim, H. K., D. Lee, and S. Lim, "A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, No. 8, 1246, 2016. Google Scholar
29. Kim, H. K., D. Lee, and S. Lim, "Wideband-switchable metamaterial absorber using injected liquid metal," Scientific Reports, Vol. 6, No. 1, 31823, 2016. Google Scholar
30. Minovich, A., J. Farnell, D. N. Neshev, et al. "Liquid crystal based nonlinear fishnet metamaterials," Applied Physics Letters, Vol. 100, No. 12, 121113, 2012. Google Scholar
31. Andryieuski, A., S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, "Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials," Scientific Reports, Vol. 5, No. 1, 13535, 2015. Google Scholar
32. Yoo, Y. J., S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, "Metamaterial absorber for electromagnetic waves in periodic water droplets," Scientific Reports, Vol. 5, No. 1, 14018, 2015. Google Scholar
33. Song, Q., W. Zhang, P. C. Wu, et al. "Water‐resonator‐based metasurface: an ultrabroadband and near‐unity absorption," Advanced Optical Materials, Vol. 5, No. 8, 1601103, 2017. Google Scholar
34. Su, J., Y. Li, M. Qu, H. Yu, Q. Guo, and Z. Li, "A 3-D-printed ultrawideband and ultralow-scattering water-based metasurface," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 3, 2885-2890, 2023. Google Scholar
35. Chen, W., H. Liu, Y. Jia, Y. Liu, and X. Wang, "Ultra-wideband low-scattering metamaterial based on combination of water absorber and polarization rotation metasurface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 9, e23260, 2022. Google Scholar
36. Wen, J., Q. Ren, R. Peng, and Q. Zhao, "Multi-functional tunable ultra-broadband water-based metasurface absorber with high reconfigurability," Journal of Physics D: Applied Physics, Vol. 55, No. 28, 285103, 2022. Google Scholar
37. Shen, Y., J. Zhang, Y. Pang, L. Zheng, J. Wang, H. Ma, and S. Qu, "Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction," Scientific Reports, Vol. 8, No. 1, 4423, 2018. Google Scholar
38. Xie, J., W. Zhu, I. V. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, "Water metamaterial for ultra-broadband and wide-angle absorption," Optics Express, Vol. 26, No. 4, 5052-5059, 2018. Google Scholar
39. Huang, X., H. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, "Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime," Journal of Physics D: Applied Physics, Vol. 50, No. 38, 385304, 2017. Google Scholar
40. Li, L., J. Wen, Y. Wang, Y. Jin, Y. Wen, J. Sun, Q. Zhao, B. Li, and J. Zhou, "A transparent broadband all-dielectric water-based metamaterial absorber based on laser cutting," Physica Scripta, Vol. 98, No. 5, 055516, 2023. Google Scholar
41. Zhao, J., S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, "Broadband microwave absorption utilizing water-based metamaterial structures," Optics Express, Vol. 26, No. 7, 8522-8531, 2018. Google Scholar