Vol. 121
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-27
An Ultra-Wideband and Translucent Metasurface Absorber Based on Water
By
Progress In Electromagnetics Research M, Vol. 121, 117-125, 2023
Abstract
Electromagnetic metasurface has become the focus of researchers in the field of electromagnetic absorption in recent years because of its thin thickness, simple structure and high absorption rate. With high real and imaginary parts of the permittivity in the microwave frequency regime, water plays a crucial role in absorbing materials. This work demonstrates a water-based translucent metasurface with 5.2 mm, which is fabricated by 3D printing. By changing the conductivity of water, a metasurface with good absorption performance is obtained, which can realize ultra-wideband absorption in 5.85-23.1 GHz and 5.85-14.8 GHz under the oblique incidence of 40˚. The metasurface has the characteristics of thin thickness, wide-band absorption, and translucency.
Citation
Chaobiao Chen, Tianhang Chen, Min Huang, Huan Lu, and Bin Zheng, "An Ultra-Wideband and Translucent Metasurface Absorber Based on Water," Progress In Electromagnetics Research M, Vol. 121, 117-125, 2023.
doi:10.2528/PIERM23080603
References

1. Duan, Xin, Xing Chen, Yonghong Zhou, Lin Zhou, and Shuji Hao, "Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1617-1621, 2018.

2. Shou, Y., Y. Feng, Y. Zhang, H. Chen, and H. Qian, "Deep learning approach based optical edge detection using ENZ layers," Progress In Electromagnetics Research, Vol. 175, 81-89, 2022.

3. Hu, Z., N. He, Y. Sun, Y. Jin, and S. He, "Wideband high-reflection chiral dielectric metasurface," Progress In Electromagnetics Research, Vol. 172, 51-60, 2021.

4. Huang, M., B. Zheng, T. Cai, X. Li, J. Liu, C. Qian, and H. Chen, "Machine–learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, No. 9, 2001-2010, 2022.

5. Lu, H., J. Zhao, B. Zhen, C. Qian, T. Cai, E. Li, and H. Chen, "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Vol. 14, No. 1, 3301, 2023.

6. Huang, H. F. and H. Huang, "Millimeter-wave wideband high efficiency circular airy OAM multibeams with multiplexing OAM modes based on transmission metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.

7. Lu, H., B. Zheng, T. Cai, C. Qian, Y. Yang, Z. Wang, and H. Chen, "Frequency‐controlled focusing using achromatic metasurface," Advanced Optical Materials, Vol. 9, No. 1, 2001311, 2021.

8. Hao, H., X. Ran, Y. Tang, S. Zheng, and W. Ruan, "A single-layer focusing metasurface based on induced magnetism," Progress In Electromagnetics Research, Vol. 172, 77-88, 2021.

9. Zheng, B., H. Lu, C. Qian, D. Ye, Y. Luo, and H. Chen, "Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks," Electromagnetic Science, Vol. 1, No. 2, 0020092, 2023.

10. Cai, T., B. Zheng, J. Lou, L. Shen, Y. Yang, S. Tang, E. Li, C. Qian, and H. Chen, "Experimental realization of a superdispersion-enabled ultrabroadband terahertz cloak," Advanced Materials, Vol. 34, No. 47, 2205053, 2022.

11. Tan, Q., B. Zheng, T. Cai, C. Qian, R. Zhu, X. Li, and H. Chen, "Broadband spin‐locked metasurface retroreflector," Advanced Science, Vol. 9, No. 20, 2201397, 2022.

12. Singh, V. K., A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, "Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite," Carbon, Vol. 50, No. 6, 2202-2208, 2012.

13. Li, L., R. Xi, H. Liu, and Z. Lv, "Broadband polarization-independent and low-profile optically transparent metamaterial absorber," Applied Physics Express, Vol. 11, No. 5, 052001, 2018.

14. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.

15. Zhang, Y., Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, "Broadband and tunable high‐performance microwave absorption of an ultralight and highly compressible graphene foam," Advanced Materials, Vol. 27, No. 12, 2049-2053, 2015.

16. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, 1988.

17. Du Toit, L. J. , "The design of jauman absorbers," IEEE Antennas and Propagation Magazine, Vol. 36, No. 6, 17-25, 1994.

18. Jaggard, D. L., N. Engheta, and J. Liu, "Chiroshield: A Salisbury/Dallenbach shield alternative," Electronics Letters, Vol. 26, No. 17, 1332-1334, 1990.

19. Li, S. J., P. X. Wu, H. X. Xu, Y. L. Zhou, X. Y. Cao, J. F. Han, C. Zhang, H. H. Yang, and Z. Zhang, "Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects," Nanoscale Research Letters, Vol. 13, No. 1, 386, 2018.

20. Hu, X., G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, "Metamaterial absorber integrated microfluidic terahertz sensors," Laser & Photonics Reviews, Vol. 10, No. 6, 962-969, 2016.

21. Park, S. J., S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC Advances, Vol. 6, No. 73, 69381-69386, 2016.

22. Ge, J., Y. Zhang, H. Li, H. Dong, and L. Zhang, "Ultra-broadband, tunable, and transparent microwave meta-absorber using ITO and water substrate," Advanced Optical Materials, Vol. 11, No. 10, 2202873, 2023.

23. Rybin, M. V., D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, "Phase diagram for the transition from photonic crystals to dielectric metamaterials," Nature Communications, Vol. 6, No. 1, 10102, 2015.

24. Odit, M., P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, "Experimental demonstration of water based tunable metasurface," Applied Physics Letters, Vol. 109, No. 1, 011901, 2016.

25. Feng, M., X. Tian, J. Wang, M. Yin, S. Qu, and D. Li, "Broadband abnormal reflection based on a metal-backed gradient index liquid slab: An alternative to metasurfaces," Journal of Physics D: Applied Physics, Vol. 48, No. 24, 245501, 2015.

26. Tiwari, Priyanka and Surya Kumar Pathak, "Design and simulation of a water based polarization-insensitive and wide incidence dielectric metasurface absorber for X-, Ku- and K-band," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 692-695, 2021.

27. Tan, X., J. Chen, J. Li, and S. Yan, "Water-based metasurface with continuously tunable reflection amplitude," Optics Express, Vol. 30, No. 5, 6991-6998, 2022.

28. Kim, H. K., D. Lee, and S. Lim, "A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, No. 8, 1246, 2016.

29. Kim, H. K., D. Lee, and S. Lim, "Wideband-switchable metamaterial absorber using injected liquid metal," Scientific Reports, Vol. 6, No. 1, 31823, 2016.

30. Minovich, A., J. Farnell, D. N. Neshev, et al. "Liquid crystal based nonlinear fishnet metamaterials," Applied Physics Letters, Vol. 100, No. 12, 121113, 2012.

31. Andryieuski, A., S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, "Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials," Scientific Reports, Vol. 5, No. 1, 13535, 2015.

32. Yoo, Y. J., S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, "Metamaterial absorber for electromagnetic waves in periodic water droplets," Scientific Reports, Vol. 5, No. 1, 14018, 2015.

33. Song, Q., W. Zhang, P. C. Wu, et al. "Water‐resonator‐based metasurface: an ultrabroadband and near‐unity absorption," Advanced Optical Materials, Vol. 5, No. 8, 1601103, 2017.

34. Su, J., Y. Li, M. Qu, H. Yu, Q. Guo, and Z. Li, "A 3-D-printed ultrawideband and ultralow-scattering water-based metasurface," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 3, 2885-2890, 2023.

35. Chen, W., H. Liu, Y. Jia, Y. Liu, and X. Wang, "Ultra-wideband low-scattering metamaterial based on combination of water absorber and polarization rotation metasurface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 9, e23260, 2022.

36. Wen, J., Q. Ren, R. Peng, and Q. Zhao, "Multi-functional tunable ultra-broadband water-based metasurface absorber with high reconfigurability," Journal of Physics D: Applied Physics, Vol. 55, No. 28, 285103, 2022.

37. Shen, Y., J. Zhang, Y. Pang, L. Zheng, J. Wang, H. Ma, and S. Qu, "Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction," Scientific Reports, Vol. 8, No. 1, 4423, 2018.

38. Xie, J., W. Zhu, I. V. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, "Water metamaterial for ultra-broadband and wide-angle absorption," Optics Express, Vol. 26, No. 4, 5052-5059, 2018.

39. Huang, X., H. Yang, Z. Shen, J. Chen, H. Lin, and Z. Yu, "Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime," Journal of Physics D: Applied Physics, Vol. 50, No. 38, 385304, 2017.

40. Li, L., J. Wen, Y. Wang, Y. Jin, Y. Wen, J. Sun, Q. Zhao, B. Li, and J. Zhou, "A transparent broadband all-dielectric water-based metamaterial absorber based on laser cutting," Physica Scripta, Vol. 98, No. 5, 055516, 2023.

41. Zhao, J., S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, "Broadband microwave absorption utilizing water-based metamaterial structures," Optics Express, Vol. 26, No. 7, 8522-8531, 2018.