1. Takeuchi, Esther S. and Randolph A. Leising, "Lithium batteries for biomedical applications," MRS Bulletin, Vol. 27, No. 8, 624-627, 2002.
2. Wei, Xiaojuan and Jing Liu, "Power sources and electrical recharging strategies for implantable medical devices," Frontiers of Energy and Power Engineering in China, Vol. 2, 1-13, 2008.
3. Schmidt, C. L. and P. M. Skarstad, "The future of lithium and lithium-ion batteries in implantable medical devices," Journal of Power Sources, Vol. 97, 742-746, Jul. 2001.
doi:10.1016/S0378-7753(01)00648-6
4. Joung, Yeun-Ho, "Development of implantable medical devices: From an engineering perspective," International Neurourology Journal, Vol. 17, No. 3, 98-106, Sep. 2013.
doi:10.5213/inj.2013.17.3.98
5. Bock, David C., Amy C. Marschilok, Kenneth J. Takeuchi, and Esther S. Takeuchi, "Batteries used to power implantable biomedical devices," Electrochimica Acta, Vol. 84, 155-164, 2012.
6. Mazzilli, Francesco, Prakash E. Thoppay, Vincent Praplan, and Catherine Dehollain, "Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs)," 2012 IEEE International Symposium on Circuits and Systems (ISCAS 2012), 2865-2868, Seoul, South Korea, May 2012.
7. Kerzenmacher, S., J. Ducreeb, R. Zengerle, and F. Von Stettena, "Energy harvesting by implantable abiotically catalyzed glucose A to A fuel cells," J. Power Sources, Vol. 182, 1-17, 2008.
doi:10.1016/j.jpowsour.2008.03.031
8. Algora, Carlos and Rafael Peña, "Recharging the battery of implantable biomedical devices by light," Artificial Organs, Vol. 33, No. 10, 855-860, Oct. 2009.
doi:10.1111/j.1525-1594.2009.00803.x
9. Nishimura, T. H., T. Eguchi, A. Kubota, M. Hatori, and M. Saito, "A non invasive rechargeable cardiac pacemaker battery system with a transcutaneous energy transformer," Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 1, 432-435, Hong Kong, China, 1998.
doi:10.1109/IEMBS.1998.745938
10. Puers, R. and G. Vandevoorde, "Recent progress on transcutaneous energy transfer for total artificial heart systems," Artificial Organs, Vol. 25, No. 5, 400-405, May 2001.
doi:10.1046/j.1525-1594.2001.025005400.x
11. Jafar, Mehdi, Igor D. Gregoric, Rajko Radovancevic, William E. Cohn, Nichole McGuire, and O. H. Frazier, "Urgent exchange of a HeartMate II left ventricular assist device after percutaneous lead fracture," ASAIO Journal, Vol. 55, No. 5, 523-524, Sep. 2009.
doi:10.1097/MAT.0b013e3181b38298
12. Goldstein, Daniel J., David Naftel, William Holman, Lavanya Bellumkonda, Salpy V. Pamboukian, Francis D. Pagani, and James Kirklin, "Continuous-flow devices and percutaneous site infections: Clinical outcomes," Journal of Heart and Lung Transplantation, Vol. 31, No. 11, 1151-1157, Nov. 2012.
doi:10.1016/j.healun.2012.05.004
13. Schuder, J. C., "Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Artificial Organs, Vol. 26, No. 11, 909-915, Nov. 2002.
doi:10.1046/j.1525-1594.2002.07130.x
14. RamRakhyani, Anil Kumar, Shahriar Mirabbasi, and Mu Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 1, 48-63, Feb. 2011.
doi:10.1109/TBCAS.2010.2072782
15. Knecht, O., R. Bosshard, J. W. Kolar, and C. T. Starck, "Optimization of transcutaneous energy transfer coils for high power medical applications," 2014 IEEE 15th Workshop on Control and Modeling for Power Electronics (COMPEL), 1-10, IEEE, Santander, Jun. 2014.
16. Knecht, Oliver, Roman Bosshard, and Johann W. Kolar, "High-efficiency transcutaneous energy transfer for implantable mechanical heart support systems," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6221-6236, Nov. 2015.
doi:10.1109/TPEL.2015.2396194
17. Joung, G. B. and B. H. Cho, "An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer," IEEE Transactions on Power Electronics, Vol. 13, No. 6, 1013-1022, Nov. 1998.
doi:10.1109/63.728328
18. Wu, Yanzhen, Aiguo Patrick Hu, David Budgett, Simon C. Malpas, and Thushari Dissanayake, "Efficient power-transfer capability analysis of the TET system using the equivalent small parameter method," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 3, 272-282, Jun. 2011.
doi:10.1109/TBCAS.2010.2089685
19. Moore, Julian, Sharon Castellanos, Sheng Xu, Bradford Wood, Hongliang Ren, and Zion Tsz Ho Tse, "Applications of wireless power transfer in medicine: State-of-the-art reviews," Annals of Biomedical Engineering, Vol. 47, No. 1, 22-38, Jan. 2019.
doi:10.1007/s10439-018-02142-8
20. Geselowtiz, D. B., Q. T. N. Hoang, and R. P. Gaumond, "The effects of metals on a transcutaneous energy transmission system," IEEE Transactions on Biomedical Engineering, Vol. 39, No. 9, 928-934, Sep. 1992.
doi:10.1109/10.256426
21. Campi, T., S. Cruciani, F. Maradei, A. Montalto, F. Musumeci, and M. Feliziani, "Thermal analysis of a transcutaneous energy transfer system for a left ventricular assist device," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 6, No. 2, 253-259, Jun. 2022.
doi:10.1109/JERM.2021.3109449
22. Shiba, Kenji, Masayuki Nukaya, Toshio Tsuji, and Kohji Koshiji, "Analysis of current density and specific absorption rate in biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart," 2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5392-5395, New York, 2006.
23. Jiang, Chaoqiang, K. T. Chau, Chunhua Liu, and Christopher H. T. Lee, "An overview of resonant circuits for wireless power transfer," Energies, Vol. 10, No. 7, 894, Jul. 2017.
doi:10.3390/en10070894
24. Nair, Sarath S. and Sudheesh KS, "Experimental investigation on effect of accelerated speed and rotor material on life of implantable micro-infusion pump tubing," Journal of Medical Engineering & Technology, Vol. 46, No. 8, 648-657, 2022.
25. Harrison, J. H., D. S. Swanson, and A. F. Lincoln, "A comparison of the tissue reactions to plastic materials: Dacron, ivalon sponge, nylon, orlon, and teflon," AMA Archives of Surgery, Vol. 74, No. 1, 139-144, 1957.
doi:10.1001/archsurg.1957.01280070143018
26. Jiang, Hao, Junmin Zhang, Di Lan, Kelvin K. Chao, Shyshenq Liou, Hamid Shahnasser, Richard Fechter, Shinjiro Hirose, Michael Harrison, and Shuvo Roy, "A low-frequency versatile wireless power transfer technology for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 7, No. 4, 526-535, Aug. 2013.
doi:10.1109/TBCAS.2012.2220763
27. Majerus, Steve, Steven L. Garverick, and Margot S. Damaser, "Wireless battery charge management for implantable pressure sensor," 2014 IEEE Dallas Circuits and Systems Conference (DCAS), 1-5, IEEE, 2014.
28. Suster, M. A. and D. J. Young, "Wireless recharging of battery over large distance for implantable bladder pressure chronic monitoring," 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 1208-1211, IEEE, Jun. 2011.
29. Sheng, Hongwei, Xuetao Zhang, Jie Liang, Mingjiao Shao, Erqing Xie, Cunjiang Yu, and Wei Lan, "Recent advances of energy solutions for implantable bioelectronics," Advanced Healthcare Materials, Vol. 10, No. 17, 2100199, 2021.
30. Tamura, Masaya, Kousuke Murai, and Marimo Matsumoto, "Design of disposable film-type capacitive wireless charging for implantable medical devices," 2021 IEEE MTT-S International Microwave Symposium (IMS), 58-61, IEEE, Jun. 2021.
doi:10.1109/IMS19712.2021.9574969
31. Zhou, Yujing, Chunhua Liu, and Yongcan Huang, "Wireless power transfer for implanted medical application: A review," Energies, Vol. 13, No. 11, 2837, Jun. 2020.
doi:10.3390/en13112837
32. Yi, Xiyuan, Weicheng Zheng, Hua Cao, Shenggeng Wang, Xiaoli Feng, and Zengtao Yang, "Wireless power transmission for implantable medical devices using focused ultrasound and a miniaturized 1-3 piezoelectric composite receiving transducer," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 68, No. 12, 3592-3598, Dec. 2021.
doi:10.1109/TUFFC.2021.3103099
33. Kim, Jong-Hun, Najam ul Hassan, Seung-Ju Lee, Yeon-Woo Jung, and Se-Un Shin, "A resonant current-mode wireless power transfer for implantable medical devices: An overview," Biomedical Engineering Letters, Vol. 12, No. 3, 229-238, Aug. 2022.
doi:10.1007/s13534-022-00231-1
34. Campi, Tommaso, Silvano Cruciani, Mauro Feliziani, and Akimasa Hirata, "Wireless power transfer system applied to an active implantable medical device," 2014 IEEE Wireless Power Transfer Conference (WPTC), 134-137, IEEE, Jeju, South Korea, May 2014.
35. Hached, Sami, Aref Trigui, Imane El Khalloufi, Mohamad Sawan, Oleg Loutochin, and Jacques Corcos, "A bluetooth-based low-energy Qi-compliant battery charger for implantable medical devices," 2014 IEEE International Symposium on Bioelectronics and Bioinformatics (ISBB), 1-4, IEEE, Taiwan, Apr. 2014.